© 2007 SOLID STEP SOFTWARE, INC 1

The Grey-Box Software Testing Method
The Functionality of Software Quality

Jerry Huth, Solid Step Software, Inc

Abstract— This paper introduces Solid Step Software’s efficient and practical approach to the software
new approach to Software Quality Assurance (SQA), and quality problem.
discusses the author’s experience using it in an applicatio

with a large Graphical User Interface (GUI). Unlike II. ENSURING SOFTWARE QUALITY
previous SQA approaches, Solid Step Test is used to . fth
build a specific functionality, Software Reproducibility, In the 60 or so years since the dawn of the modern

directly into the software to drastically reduce the costs ad COmputer age, a daunting problem that early devel-
risks associated with the development and maintenance of opers of complex computer software systems faced,

software systems. and that software developers still face today, is the
Index Terms— Software Engineering, Software Quality assurance of software quality. Maurice Wilkes, who
Assurance, Automated Software Testing, Grey-Box Testing, led the team that built one of the first stored-program
Software Reproducibility, Playback Determinate Software computers at Cambridge University in the 1940's,
recounted years later that “people had begun to
realize that it was not so easy to get a program right
as had at one time appeared.” He even remembered
the precise moment when “the realization came over
OLID Step Software’s new software testingne with full force that a good part of the remainder
product, Solid Step Test, constitutes a whollgf my life was going to be spent in finding errors
new approach to the problem of Software Qualh my own programs.” [2, p. 5]
ity Assurance (SQA). Unlike previous SQA ap- One of the finest recent papers on the topic of
proaches, Solid Step’s Grey-Box Software TestirgQA, “What Is Software Testing? And Why Is It So
Method embeds the functionality of automatic tesHard?” [3], was written at approximately the same
case creation directly into the software applicaticime that Solid Step Test was being developed. As
to drastically reduce the engineering risks and coditsle has changed in the SQA field since then, this
associated with the regression testing, bug detg@@per remains one of the best descriptions of why
tion, error correction and functional verification obnsuring software quality is a hard problem, and it
software systems. And unlike brittle black-box soffsrovides an excellent overview of the state of the
ware testing techniques, Solid Step’s testcases arein SQA tools and practices.
always created automatically and never require anyBecause SQA is such a hard problem in general,
programming. Furthermore, Solid Step’s patentes that paper explains, over the years people have
reproducibility engine (US Patent 6,845,471 [llgxplored a complex array of methodologies and
handles the general case of software processeshnologies in a bid to develop ways to aid the as-
even applications with a complex Graphical Usaurance of software quality, and in general to make
Interface (GUI) or asynchronous process interactiosoftware development easier. Despite these efforts,
This paper discusses Solid Step’s new SQA apewever, no one has found a way to build quality,
proach and details the author’s experience using something that helps make quality much easier
Solid Step Test in har*GIS Field Information Systo ensure, directly into the software. And although
tems’ “Truckmap” application. The main questiopeople have explored various ways to somehow
the author wanted to answer was how well this SQBuild quality into the software development process,
approach would work in a commercial applicatiom a bid to help raise the quality of the resultant
with a large GUI. As this experience shows, Solidoftware, these initiatives also haven't produced any
Step Test has proven to be an extremely effectivdear SQA breakthroughs.

I. INTRODUCTION

© 2007 SOLID STEP SOFTWARE, INC 2

EE Har*GISLLE TruckMap® Field PC -LIC
Fils Mobes Viswe Fevopbss Gobo fouke G735 CecCapure Comm Query Gecfors Took Help

= tlalcinlele] @] sl x| mlm)e) e ma

Fig. 1. Truckmap’s Main Window

But Solid Step Software’s new SQA productApplications with an embedded GUI include office
Solid Step Test, represents just such a clear asaftware, like word processors, spreadsheet editors,
effective breakthrough. It provides a specific funstand-alone email readers, etc; computer-aided de-
tionality that is included in the software application sign software, like mechanical drawing tools, simu-
built directly into the software - that makes softwarkation packages, etc; video games; database applica-
guality assurance a radically easier task. It leveragems with large stand-alone GUI's; web browsers;
the power of the computer to automatically delivestc.
the most important data for ensuring software qual-One of the main questions the author wanted to
ity: The Software Testcase. address when using Solid Step Test in har*GIS’

Solid Step Test gives developers an easy way d@plication was how well this SQA approach would
build into the software application the functionalwork in a commercial application with a large
ity of Reproducibility, or Automatic Testcases: thembedded GUI. har*GIS’ “Truckmap” application,
Ability to Automatically Create Testcases Whenevey mobile mapping application with a very large GUI,
the Software is Run. And unlike the current statgs g great example of just such an application.
of-the-art in SQA technology (i.e. brittle black-box Fig. 1 shows Truckmap’s main window, which

software te§ting techniques), Solid Syep’s testca&gplays an area map with various data, such as
“language” is not actually a programming languaggaqway information, utility equipment locations,
at all - it contains no control statements like “'f”'etc, overlaid on the map. Truckmap’s users include
“while”, “goto”, etc - so individual testcases nevegonsiryction crews, utility workers, etc, who are on
require programming. the road a lot during the course of their work.
) Users can create their own custom data to be over-

A. Embedded Graphical User Interfaces laid on the map, which is supported by the menus

Although Solid Step Test works for the generand dialogs of the application’s GUI. The kinds of
case of software processes - meaning that it cdata that can be created in this way include what
enable Reproducibility in any software process are calledgeonotesfieldnotesincident reportsand
one of the main kinds of software it was originallynap sketched~ig. 2 shows a fieldnote (dark box at
developed for is software with aembedded GUI bottom left) and the corresponding Fieldnote dialog.

© 2007 SOLID STEP SOFTWARE, INC 3

e [Soke Sren Solware's Oifice s
i,

Longhude: [0SZ200T Lahuds (41071358

!Eu_ir:l Slep Sofame, Ino
o A5 A apahog fee 5100
PEARL EAST TR Brculder, CO BII03

TIRG

Fig. 2. Truckmap'’s Fieldnote Dialog

[1l. THE GREY-BOX SOFTWARE TESTING lowing: by “covering” the main interfaces of the
METHOD application - adding 1 or a few Lines of Code

, (LOC's) at the interface points to make calls into
Black-box software testing products have beeyiy step's Reproducibility Libraries - Solid Step

available for a great many years, but as har*GIZsst can automatically create testcases whenever the

engineers found when they tried using them withyjication is run. Then at any later time Solid

their application, they suffer from a number of probge s natented Reproducibility Engine coordinates

lems that greatly limit their usefulness in practicey ¢q actions in the testcase to automatically replay
Namely, black-box testing techniques are quite labﬁ{at exact run of the application

intensive because they tend to be very brittle, andThe major advantages of this grey-box testing

in general require programming on a per-testcagg, gach are that the testcases never require any
basis (as evidenced by the full-featured progra fogramming, and it handles the general case of

ming languages that black-box products use for th btware processes, i.e. even applications with Com-
testcases).

,) plex GUI's or Asynchronous Processes.
Because of the problems inherent with black-

box testing, har*GIS’ engineers had been running
a manual test suite on their application. Although- Solid Step’s Reproducibility Engine
black-box techniques offer the promise of a certain To explain how Solid Step’s patented repro-
measure of automation in the playback of testcas@sicibility engine works, it's helpful to look at
there was little evidence of longterm manpowey precursor capture/playback engine that was in
savings due to the lack of automation in testcap@oduction use at Synopsys, Inc, as early as the
creation, because of the per-testcase programmijag 1980's/early 1990’s. Their flagship product had
that's required in general, and the maintenangelarge X Windows GUI that used a simple cap-
costs associated with the brittle nature of black-bayre/playback engine to save and replay the GUI
testing. events that occured during the original run of the
In stark contrast to brittle black-box testing techsoftware. Jerry Huth was on the team that developed
nigues stands Solid Step’s new SQA product, Soli] and the original idea to save and replay the GUI
Step Test, which uses a testing approach knownegents can be attributed to the group’s manager and
The Grey-Box Software Testing Methddr which technical lead, William Krieger, who was also a co-
Solid Step’s trademark name iBe grey-box solu- founder of Synopsys.
tion™™, Fig. 3 shows that early playback engine. Because
The main idea behind this approach is the foit's just a simple sequential loop that fires GUI

© 2007 SOLID STEP SOFTWARE, INC

=31 Playback Next Event

Generic | 3T Events

The App

Actions /V

Serial
Test Log

The Testing Method

Fig. 3. Built-In GUI Event Playback

Pl Playback MNest Event

GT_TI Events T

File
Bundle
Plig__ . Senal

Filenarmes Test Log

Glc Ewvents ."

The App The Testing Method

Fig. 4. Handling File Data During Testcase Playback

© 2007 SOLID STEP SOFTWARE, INC 5

events at the application until none are left, it can Input file data is handled like this: During testcase
only enable completely automatic reproducibility icreation, i.e. during the original run of the software
the simplest kinds of software, i.e. applications thapplication, input data files are copied into the file
have no asynchronous interprocess communicatimmndle that accompanies the testcase event log file.
and which don’t read/write files. Synopsys’ appliAdditionally, a “fle mapping event” is stored in
cation certainly wasn’t that simple, so the testcasiege event log file. As illustrated in Fig. 4, the file
log file (the sequential list of GUI events) generallynapping events are used during testcase playback to
did not by itself constitute a complete testcaseupdate the entries in the “file map”, so that at any
typically a human had to gather together and/or edjiven time during testcase playback, the file map’s
some files, including the testcase event log file itseéfntries can be used to serve up file mappings via
to create a complete testcase. function P4 that point the application into the file
Although this simplistic version of the cap-bundle to find the input files it needs to read. In
ture/playback engine has some obvious limitatiors,similar fashion, output data files are also stored
it proved to be an extremely reliable testing apn the file bundle to facilitate easy data verification
proach due to the fact that it was built directly intauring testcase playback, as described in the “Case
the application in the same way that Solid Step TeStudy” section below.
is builtin. In fact, it was the primary testing platform Database files are handled similarly to other input
for many production releases of Synopsys’ softwariles, but with a twist to accomodate the fact that
In later years however, as Synopsys moved awthey are updated as the software runs. This is also
from the X Windows GUI platform toward MSexplained in the “Case Study” section below.
Windows, and probably also due to the fact that
neither Krieger nor Huth were at Synopsys during- Interprocess Communication
this transition period, that testing approach was The next major step in the development of Solid
never implemented in Synopsys’ later applicatiorStep’s generalized reproducibility engine is the ad-

that used the MS Windows GUI platform. dition of the “gate” and its associated control logic,
which gives Solid Step Test the ability to handle
B. Automatic Testcase Creation communication between software processes, partic-

larly asynchronous interprocess communication. If
ot handled correctly, asynchronous events such as
ese lead to software indeterminacies that result in

The principal design goal of Solid Step Test iy
to give the programmer an easy way to inclu
the functionality of “completely automatic testcas

ncorrect testcase playback.

creation” in their application. This means that no hd0c0 ! -

: e Fig. 5 shows Solid Step’s complete Reproducibil-
man has to gather together files, edit files, progra Egngine As the testcgse is kF))eing plgyed back
test scripts, etc, or in any other way be required S T : o

e reproducibility engine is informed via function
expend _eﬁfort to assemble the_complete testc_asepz wk?en asyncr)(ronc?us events occur. If an asyn-
Thus it is Solid Step Tests job to automatically ronous event is expected at a certéin time, but

save with the testcase any and all data required. ;
run that testcase, and it is the job of Solid Step"g asnt happened. yet, then the Gate closes and
patented reproducibility engine to coordinate all ?stcase playback is halted untl_l the event actually
the testcase data to replay that exact run of t gppens. On the qther har!d,' it an asynchronous
- event happens earlier than it is expected, then the
software application. P)) .
reproducibility engine stores the event information
i until the event was expected to happen, i.e. it waits
C. File Data until the corresponding event in the serial test log
A very important kind of data that must bas played back before processing the asynchronous
stored with the testcase to enable reproducibility fexent.
applications that read or write data files is, of course, A sub-genre of interprocess communication is
the data from the files. This also represents the fitee “human action”, which closes the gate during
major step in the progression from the simple GUéstcase playback to wait for a human to perform
capture/playback engine to Solid Step’s generalizedme specific task like loading paper into a printer,
reproducibility engine. etc.

© 2007 SOLID STEP SOFTWARE, INC 6

Playback Mesxt Event

F1

Call TP Funection

F2

F3

I i
Events
- T
4
File i »
Events :
—
File
Bundle
Pile 9 " Serial
Filenames Test Log
The App Solid Step Test 118 Pat 6,845,471

Fig. 5. Solid Step’s Reproducibility Engine

Fig. 6 is an illustration of the serial test lognot only in individual processes, but also in multi-
or event log, which stores the events that occprocess software systems.
as the software is being run. For an application
with an embedded GUI like Truckmap, the mai%_ The Playback Function
process that runs the GUI naturally serves as an . _
event arbiter, since it processes events in a serial? the simple precursor playback engine, the

fashion, so it can create the event log as it procesédyback process is essentially just a loop - it
the GUI and other events. simply plays back events until there are none left.

Fig. 7 shows the flowchart for the simple engine’s
Of particular interest is how the asynchronoyslayback function, it just always plays back the
events such as the Interprocess Communication awént and has no generalized knowledge about re-
Human events control the Gate in the Reproducibproducibility.
ity Engine to make the software application run By contrast, as shown in Fig. 8, the playback
correctly during testcase playback. In effect thieinction at the heart of Solid Step’s reproducibility
serial test log acts as a sort of timing strip that opeesgine knows how to handle all the events - the
and closes the Gate during testcase playback to kegpchronous, asynchronous, file and human events
the software processes in sync in the same wayand in general encapsulates all the knowledge
they were during the original run of the software. Inequired to make any software process completely
this way, Solid Step Test can enable reproducibilitgproducible.

© 2007 SOLID STEP SOFTWARE, INC 7

{Infer
* | Proc 1 Inter
Y/ < |Proc 2
&
o
i
f
Menu Toer
Button Procd
/ /
Inter
PFroc 5
Move Enfiv .
M
W [B r

Button File Map
Entry

Buysh Resize
Buiton Window
Fig. 6. Serial Test Log
Riead the K Calthis Everd'
et Everd: s s
P1-Plaphack o N ot | CrFlybak [l
Next Event Test Log function E.
K
E.= Egturmn ¢
E

Fig. 7. Simple Playback Function

The first decision box in Fig. 8, “Gated orthe event has not been received yet, then the Gate
Empty?”, simply means that if the Gate is closea]oses so the software process will wait for the event
or if there are no more events in the serial evetd happen. If the event has been received already,
log file, then do nothing and return. The secortien the playback function for that event is called
decision box means that if the event is not a Filand the process continues running.

Human or Asynchronous event, i.e. if it is a basic
Synchronous event, then simply call that event’s
playback function. The next two decision boxes tell
what to do if the event is a File or Human event. There are a number of factors that can cause soft-

The last decision box, which is triggered only foware to be indeterminate (to exhibit unpredictable
non-Human Asynchronous events, tells what to diehavior). Since the purpose of Solid Step Test is
for the two possible cases (i.e. the asynchronotess make the software reproducible, which implies
event either has or has not been received yet).pifedictability, it is instructive to look at the various

V. PLAYBACK DETERMINATE SOFTWARE

© 2007 SOLID STEP SOFTWARE, INC 8

Readthe
Pl.Plaphack o . Giteda M meﬁﬁ
K'Y
$ Call this Evert's
E basic Symc CoFlavbad: il
E. = Eeturn
D&F = Delete thiz
Ewvent & Fehun Tipdate fhe
Filehap with il
this Evendt's Diata D&R

Motfication been

Zall this Everd's

Cmleare d M Close the Gate
funetion ¢
v Close the Gate
Zall this Evert's
Delete the i O I
Saved . ayback
Hotification Save this Event fur, 11” o
*® * D;'R
D&E E

Fig. 8. Solid Step’s Playback Function

types of software indeterminacies to understand hawmbers. One easy way to handle this situation is to
Solid Step Test handles them. save the random numbers with the testcase, although
Excluding catastrophic system errors such as algpending on the application there may be other
of memory conditions, operating system crashasays to handle it as well.
etc, all software indeterminacies fall into one of The third type of software indeterminacy is
three categories. The first category of software inaused by asynchronous process communication. If
determinacy is when the code, for no good reasamt handled properly, multiprocess interaction of
does something that makes the software indeterrthiis sort can cause variations in testcase playback.
nate. For instance, a generic module may sort datais last category of indeterminacy is handled by
using pointer values. This type of indeterminacy iSolid Step’s patented reproducibility engine, as dis-
easy to fix by changing the code to remove thmissed in the previous section.
indeterminacy, for example to make it stop using In the case of the second and third categories
pointer values in an unpredictable manner. of software indeterminacy, it's interesting to note
The second type of indeterminacy occurs whehat although the software may be indeterminate
the software is actually designed to be indetewhen the user originally runs the application, it has
minate, such as when an algorithm uses randoravertheless been made to be determinate for the

© 2007 SOLID STEP SOFTWARE, INC 9

purposes of playing back the runs (testcases) of the
software. In this case, the software is said to be void CTruckmapView::OnPanleft()

Playback Determinate { .
SstCmdTarget(this, ID_PANLEFT) ;

V. CASE STUDY: USING SOLID STEP TEST WITH |y thjs implementation, SstCmdTarget is a class,
C++/.NET not just a function. This LOC instantiates an
In this section the author discusses how Solabject of that class, whose ctor stores the data
Step Test (Sst) was used in har*GIS’ applicatioin the serial test log. During testcase playback,
with code excerpts to illustrate the various ways th#te OnPanLeft() function is triggered when the
the interfaces are covered in a large GUI applicati@stCmdTarget class’ OnPlayback() function sends
that uses the C++/.NET platform. (See appendix ftme ID_.PANLEFT message to the CTruckmapView
complete code excerpts.) object.

A. Object Registration C. Keystrokes & Button Clicks

During testcase playback, messages are sent tékeystrokes and button clicks are handled in a
the GUI objects to replay the individual GUI eventsimilar manner to menu items, i.e. by adding 1 LOC
(or actions) that are saved in the serial test log the callback function:

Examples of objects receiving these messages in-

clude classes derived from CFrameWnd, CWinApp, Vvoid CTruckmapView::

CView, etc. When these objects are created, they are OnLButtonDown(UINT nFlags,
registered with the SstPlayer (the capture/playback CPoint point)

engine) to give each object a unique identifier. SstLBD(this, nFlags, point) :

For instance, Truckmap’s CView-derived class is

CTruckmapView, and the following Line of Code Ag in the previous example, SstLBD is a class

(LOC) was inserted in its constructor (ctor) tQynhose ctor saves the data in the serial test log.
register it with the Sst libraries:

CTruckmapView::CTruckmapView() D. Window Position and Size

{ To handle changes to a window'’s position or size,
Solid Step Test provides the SstMoveWindow class,
which saves a window’s position and size in the
serial test log. However, since the .NET framework
can handle changes to a window’s position and
size automatically, these events were not represented
explicitly in Truckmap’s code.
CTruckmapView::"CTruckmapView() In order to cover these events, Truckmap’s main
{ window’s OnMove() and OnSize() virtual functions
were overridden and LOC’s added to use the Sst-
SstPlayer.Unregister(this) ; MoveWindow class:

SstPlayer.RegisterType(this,
"TruckmapView") ;

And the following LOC was added in the object
destructor (dtor) to unregister it:

All GUI objects that receive notifications from void CMainFrame::OnMove(int x, int y)

Sst are registered in a similar manner. {
CFrameWnd::OnMove(x, Y);
SstMoveWindow(this) ;
B. Menu ltems }
Me.nu ltems are typlcqlly covered by ‘?‘dd'”g 1 void CMainFrame::OnSize(UINT nType,
LOC in the callback function for the menu item. For int ox
instance, in Truckmap, the “Pan Left” menu item is int cy)

covered like this: {

© 2007 SOLID STEP SOFTWARE, INC 10

CFrameWnd::OnSize(nType, cx, cy); G. Toolbars

SstMoveWindow(this) ; Toolbar move events present a similar problem
as the window move/resize events discussed above,
namely that toolbar move events were not explic-
itly represented in Truckmap’s code because the

E. Simple Dialog Boxes NET framework handled those events internally.

Simple dialog boxes, which do little or no pro-B”t unlike the case of window move/resize, the

cessing until the user closes it, are typically handlé*:&ass that receives the events thgt need to be saved
by adding 1 LOC in the ctor and dtor, and n the testcase also was not directly represented

or a couple LOC'’s in each callback function thaf’ Truckmap’s code. So to handle toolbar move
can close the dialog. This example shows ho ents, a subclass of the .NET toolbar was added to

the Fieldnote dialog is covered. The dialog, show uckmap, and the OnWindowPosChanged() virtual

above in Fig. 2, has three buttons that can close nction overridden to handle the move events. The

an “Update” button, a “Delete” button and a“CIosemain window’s toolbars were changed to use the
button ’ new class, and the SstDockState class was used to

Of partular inteest s the “Update" calloao (18 SOSIon of &l e toobars (See Append
function, which not only saves the event in the seri 1 P :

test log, but also saves the current values of the
text boxes and checkboxes of the dialog in the tddt AfxMessageBox

of the ir)dividual GUI elements of the dialog. (Seg,q development team considered implementing
Appendix for example code.) their own message box functionality, which would
have allowed them to make the message boxes
completely reproducible, i.e. to make the message
boxes appear during testcase playback.

More complex dialog boxes, which do a signifi- But another much simpler way to cover this mes-
cant amount of processing as the user interacts Wilye box functionality was tried, and it ultimately
the individual GUI elements of the dialog, may neegorked so well that there seemed to be no need
those GUI elements to be covered individually. Fqg replace .NET’s message box functionality. This
instance, Truckmap has a dialog named “CGNMmpproach involved using .NET’s message box virtual
grDIg” (short for Geo Note Manager Dialog), whichynction feature to avoid displaying the message
lists all the various kinds of geonOteS the user hgéxes during testcase p|ayback and instead sim-
created. If the user clicks on a geonote in the lig}jy return whatever value was returned during the

the callback function for the list element fills in thQ)r|g|na| run of the app”cation_ (See Appendix for
other fields of the dialog with the specific values afxample code.)

that geonote.

To make this dialog reproducible, it was neces- . _
sary to be able to record and play back the list Simple Data Files
selection actions. This was done by adding a new“Simple” data files, such as picture files that are
action class specific to this dialog, which whensed by a drawing program, are files that are only
played back caused that callback function to lread and written at specific times, i.e. when the user
called. Also, the public function CallOnSelchangedtirects the program to read or write the files. These
Function() was added to the CGNMgrDIg clasfles are covered by inserting a call to Solid Step’s
since the OnSelchangeMpsktlistCtr() function wagproducibility libraries at the point where the file
not public. (See Appendix for example code.) is read or written.

F. Complex Dialog Boxes

© 2007 SOLID STEP SOFTWARE, INC 11

Although in general only input files need tdundle - i.e. as noted above, the program runs in
be covered to enable reproducibility, in practica sandbox provided by Solid Step’s reproducibility
output files are often covered in the same mannerdngine. (See Appendix for example code.)
facilitate easy data verification. In both cases, during
the original run of the program, Solid Step Test, The Windows Registry
copies the file into the testcase’s file bundle. Then .

. . . For applications that use the .NET platform, an-
during testcase playback, input files are read from : .
: : : . o&her very important interface that must be covered
the file bundle so the correct input file data is us L . .

S . 0 enable reproducibility is the Windows registry.
by the application. Also during testcase playbacy, with other interfaces, it is covered by addin
Solid Step Test redirects the output files to a spema? . . S oy 9

: . .__galls into Solid Step’s libraries at the points where
output file area and the output data is automatica : . i
i . A . e Windows registry is accessed. The code example
verified against the output files stored in the testcasha h h | hich ides f
file bundle. Shows how the SstReg class, which provides func-

Although during testcase playback the applicatiot'nons with profiles similar to the registry functions

AR Lo) .._originally used in Truckmap, is used in place of
thinks” it is reading input file data and writing h f . See A dix f | d

output file data to and from the same file Iocatior;[sOse unctions. (See Appendix for examp'e co e)
)) . - In this way the data returned from the Windows
it was using during the original run of the program

.) : egistry is saved with the testcase and during test-
Solid Step Test actually redirects the locations {;Oase playback that saved data is returned to the

files in the file bundle or in the special output f”ezri#plication so that it runs in the same way that it

area. In this way, Solid Step Test lets the progra : L o
run during testcase playback in what is essentiaﬁ?/n during the original run of the application.

a “sandbox”, so that it runs as it originally ran _

but without requiring the input files to be in theil- Téstcase Creation

original locations and without causing the original When the interfaces of the application are suffi-
output files to be overwritten. ciently covered by calls into Solid Step’s libraries,

Although Truckmap does not use simple inpuhen Solid Step Test saves all the data in a testcase
data files (it uses database files for all its data - sag the application runs, and at any later time Solid
the “Database Files” section below), it neverthele§tep’s reproducibility engine can coordinate all the
dumps the database fields to simple output filgsita to replay that exact run of the application. In
to make use of Solid Step’s easy data verificatidhis way, Solid Step Test provides an “Always On”
functionality (see the “Data Verification” sectiorfunctionality that works behind the scenes to create
below). testcases whenever the application is run.

There are a number of ways that Solid Step
Test can be used in an application. In the most
likely scenario, Solid Step Test can be configured

In contrast to simple data files, database files areoverwrite the previous testcase if the application
continually read and written as the application runkad exited normally with no apparent errors. If the
Covering database files is done in essentially tB@plication exited abnormally, however, then Solid
same manner as simple data files, i.e. by addingsgep Test could automatically save the testcase for
call to Solid Step’s libraries at the place where tHater evaluation by the application programmers. In
file is used in the application. another scenario which may be useful in certain

Like simple data files, database files are copiaituations, for instance during trial testing periods,
into the file bundle. During testcase playback, hovolid Step Test could be configured to save all the
ever, another copy of the file is made - a “sandbox&stcases, or to save a random sampling of testcases.
version - which the program reads and writes as theAnother very common scenario when testcases
program runs. This lets the program run during testill need to be saved is when an application pro-
case playback in the same way that it ran during tiggammer/tester is creating a functionality or regres-
original run of the application, but without readingion test suite. In Truckmap a special dialog was
or modifying the files from their original locations,added for this purpose, as shown in Appendix Fig.
and without modifying the files in the testcase filé, and it lets the user specify the testcase name

J. Database Files

© 2007 SOLID STEP SOFTWARE, INC 12

and allows them to include a description of th&unctions in existing subclasses, or by creating sub-
functionality that the testcase is meant to verify. classes and then overriding the virtual functions, as
was done to cover the toolbar events.
It is expected that other full-featured platforms,
M. Data Verification such as Sun’s Java platform, or the X Windows

Although Truckmap’s output data is stored “ﬁ)latform, etc, would also work well with Solid Step

a database file, since Solid Step Test includes %ﬁst since by their nature as full-featured platforms
automatic data verification feature for regular (nof"€Y Would include all the hooks, callbacks, etc,
database) output files, code was added to duffiuired to properly expose any interfaces that need
Truckmap's data to regular files. Then when testcalkPe covered by calls to Solid Step’s libraries.
playback is finished, Solid Step Test automatically

verifies the data against the data stored with the VI. WHAT IS SOFTWARE QUALITY ?

testcase. (See Appendix for example code.) As Jacco Wesselius and Frans Ververs pointed
The dialog in Appendix Fig. 3 lets the user choost in their landmark paper on “software quality
which data_ to dump out and also lets the user ins@gntrol” [4], quality is a pervasive part of humans’
a “Pause” into the testcase event log. everyday lives, yet its exact meaning seems to
This example also illustrates how some kinds @fe somewhat fuzzy. When asked for a definition,
data, such as the floating point numbers that reprenany people will remain silent or will vaguely
sent latitude/longitude values, may not always negger things like ‘excellence’, ‘reliability’, ‘it cannot
to be saved with the testcase. This is useful singg defined’, ‘everyone knows’, etc.”
testcases whose purpose is to verify functionality Their paper surveys a variety of issues related to
unrelated to the exact floating point values mighfroduct quality in general which explain why it's
be unnecessarily brittle if the floating point numbersych a hard concept to nail down. Examples in-
were always saved with the testcases. clude the difference between “quality of design” and
“quality of conformance” (i.e. luxury vs economy),
_ _ which stem from the fact that ultimately the defini-
N. Case Study Discussion tion of quality depends on the user (observer), and

The focus of this project was to see how wefhe reality is that even a single person’s perception
Solid Step Software’s new SQA approach woulgf quality can change - indeed is likely to change -
work in a large commercial application with arPver time.
embedded GUI. So even though some parts of theWVith the aim of bringing some order to the
Truckmap application were beyond the scope of tHiénbiguities - some would say fundamental para-
project, such as the GPS features, its very large Gdaxes - surrounding the nature of product quality
provided an excellent opportunity to explore howWt general, and especially the nature of software
this approach would work in a large software systeftvality, Wesselius and Ververs define the “Three
that uses a leading development platform such @§@mponents of Software Quality”:

NET. As this experience has shown, Solid Step 1) Obpjectively Assessable Component

Test works very well in praCtice with a full-featured Criteria which lend themselves to Objective
platform like this since by its nature the platform verification

provides all the hooks, callbacks, etc, needed to
allow the application programmer to insert the calls
to Solid Step’s libraries required to make the appli-
cation reproducible.

For instance, although the interfaces that need to
be covered by calls to the Solid Step libraries were
usually readily available in Truckmap’s code, in Inthe search for better software quality assurance
some cases they were not represented in Truckmajos “control”), one important idea they put forth is
existing code. But even in those cases, the interfadesexpand category 1 so that as much criteria as
were easily exposed, either by overriding virtugdossible becomes objectively assessable. Another

2) Subjectively Assessable Component
Criteria requiring subjective validation

3) Non-Assessable Component
Criteria, such as “future needs”, that can't be
immediately evaluated

© 2007 SOLID STEP SOFTWARE, INC 13

very important idea is to use frequent feedbadssessable and non-assessable components of soft-
mechanisms, such as with the spiral process modegre development. In this way, Solid Step’s new
to lower risk as much as possible in the othé&@QA approach, which has an instantly recognizable
components of software quality. impact on the first component of software quality,
also greatly helps with the other two components as
A. Automation & Preparedness well.
The most obvious benefit that Solid Step’s new
grey-box testing approach has for the software de-
velopment process is in the way that it enables
virtually complete Automation of testcase creation _ _
and playback, which drastically lowers the cost of Solid Step Software’s new SQA product, Solid
software testing. This represents a major advaneteP Test, can be thought of as “The Functionality of
over black-box testing, which in general requireg0ftware Quality” because it is a specific function-
programming on a per-testcase basis, and whichaity, automatic tes_tca_se creation, that is mcluded_ in
difficult to use in practice because of the brittiéhe software application to make software quality
nature of black-box testing techniques. It also has@gsurance a radically easier task. For this reason it
major advantage over most other SQA approacl"%@nc_'s apart from all other SQA approqchesl because
because it facilitates system-wide, real-world testif§W if any others represent a functionality that
of the application. Furthermore, it's not limited tdS included in the software application itself, and
any particular kinds of software errors, as ma,ﬁ,ertalnly no others can enab'le completely automatic
SQA approaches are, since it offers the ability f§Stcase creation for essentially any and all runs of
reproduce any and all runs of the software systdfif Software.
(excluding catastrophic errors like operating systemOne of the main kinds of applications Solid
crashes, etc). Step Test was originally developed for is software
But beyond the obvious advantage that such exith an embedded GUI. har*GIS Field Information
tremely thorough and robust testcase automation Kagstems’ “Truckmap” application has a very large
for reducing the cost of software testing, anoth@mbedded GUI and therefore has provided a great
perhaps equally important benefit Solid Step Tegpportunity to explore how this new SQA approach
has for the overall software development processWerks in a real-world application. As this experience
through its facilitation of Preparedness, by virtughows, Solid Step Test has proven to work extremely
of its “Always On” testcase creation. (Althoughwvell for a large GUI application that uses a leading
this functionality is a feature that can be turnegrogramming platform such as Microsoft's .NET
off, when enabled it is always working in theplatform.
background.) And since it is a part of the software But because Solid Step’s patented reproducibil-
application itself, it can be used not only by théy engine works for the general case of software
programmers during development, or by the QApplications, even those with asynchronous process
engineers during testing, it can also be used iteteraction, this new SQA approach has the potential
quickly identify errors that occur for end users ofo become the standard for enabling the highest
the software, in the exact way the application is uséglels of software quality in many other types of
in their real-world environments. software as well. Indeed it should be very inter-
So this new automatic testcase creation funesting to see how well Solid Step Test works in
tionality, which represents an objectively assessalgeactice in more applications, from GUI software
software development criteria that’'s built directlyo embedded applications, web-based software to
into the application, happens to also facilitate preommand-line programs, and essentially every other
viously unheard of levels of feedback througholind of software application, especially now that
the development process by virtue of its “Alwaysompletely automatic testcase creation is known to
On” functionality. And this kind of feedback is,be an extremely reliable functionality in practice for
as Wesselius and Ververs point out, critical tat least one common type of software: applications
assuaging risks associated with the subjectivelyith a complex embedded GUI.

VIlI. CONCLUSION

© 2007 SOLID STEP SOFTWARE, INC

REFERENCES

[1] J. Huth, Apparatus for and Method of Action Synchronization
for Software ReproducibilityUS Patent 6,845,471, 2005.

[2] S. Lohr,Go To: The Story of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists and Icastsl
— The Programmers Who Created the Software Revolubiemv
York, NY, USA: Basic Books, 2001.

[3] J. Whittaker, “What Is Software Testing? And Why Is It So
Hard?”, IEEE Softwarevol. 17, no. 1, pp. 333-337, Jan. 2000.

[4] J. Wesselius and F. Ververs, “Some Elementary Quest@ns
Software Quality Control,"Software Engineering Journabp
319-330, Nov. 1990.

Visit www.solidstep.comto download a demo of a Solid Step Test
enabled application, learn more about Solid Step Softwarav SQA
solution, or to contact the author.

v1-137

14

