
c© 2007 SOLID STEP SOFTWARE, INC 1

The Grey-Box Software Testing Method
The Functionality of Software Quality

Jerry Huth, Solid Step Software, Inc

Abstract— This paper introduces Solid Step Software’s
new approach to Software Quality Assurance (SQA), and
discusses the author’s experience using it in an application
with a large Graphical User Interface (GUI). Unlike
previous SQA approaches, Solid Step Test is used to
build a specific functionality, Software Reproducibility,
directly into the software to drastically reduce the costs and
risks associated with the development and maintenance of
software systems.

Index Terms— Software Engineering, Software Quality
Assurance, Automated Software Testing, Grey-Box Testing,
Software Reproducibility, Playback Determinate Software

I. INTRODUCTION

SOLID Step Software’s new software testing
product, Solid Step Test, constitutes a wholly

new approach to the problem of Software Qual-
ity Assurance (SQA). Unlike previous SQA ap-
proaches, Solid Step’s Grey-Box Software Testing
Method embeds the functionality of automatic test-
case creation directly into the software application
to drastically reduce the engineering risks and costs
associated with the regression testing, bug detec-
tion, error correction and functional verification of
software systems. And unlike brittle black-box soft-
ware testing techniques, Solid Step’s testcases are
always created automatically and never require any
programming. Furthermore, Solid Step’s patented
reproducibility engine (US Patent 6,845,471 [1])
handles the general case of software processes,
even applications with a complex Graphical User
Interface (GUI) or asynchronous process interaction.

This paper discusses Solid Step’s new SQA ap-
proach and details the author’s experience using
Solid Step Test in har*GIS Field Information Sys-
tems’ “Truckmap” application. The main question
the author wanted to answer was how well this SQA
approach would work in a commercial application
with a large GUI. As this experience shows, Solid
Step Test has proven to be an extremely effective,

efficient and practical approach to the software
quality problem.

II. ENSURING SOFTWARE QUALITY

In the 60 or so years since the dawn of the modern
computer age, a daunting problem that early devel-
opers of complex computer software systems faced,
and that software developers still face today, is the
assurance of software quality. Maurice Wilkes, who
led the team that built one of the first stored-program
computers at Cambridge University in the 1940’s,
recounted years later that “people had begun to
realize that it was not so easy to get a program right
as had at one time appeared.” He even remembered
the precise moment when “the realization came over
me with full force that a good part of the remainder
of my life was going to be spent in finding errors
in my own programs.” [2, p. 5]

One of the finest recent papers on the topic of
SQA, “What Is Software Testing? And Why Is It So
Hard?” [3], was written at approximately the same
time that Solid Step Test was being developed. As
little has changed in the SQA field since then, this
paper remains one of the best descriptions of why
ensuring software quality is a hard problem, and it
provides an excellent overview of the state of the
art in SQA tools and practices.

Because SQA is such a hard problem in general,
as that paper explains, over the years people have
explored a complex array of methodologies and
technologies in a bid to develop ways to aid the as-
surance of software quality, and in general to make
software development easier. Despite these efforts,
however, no one has found a way to build quality,
or something that helps make quality much easier
to ensure, directly into the software. And although
people have explored various ways to somehow
build quality into the software development process,
in a bid to help raise the quality of the resultant
software, these initiatives also haven’t produced any
clear SQA breakthroughs.

c© 2007 SOLID STEP SOFTWARE, INC 2

Fig. 1. Truckmap’s Main Window

But Solid Step Software’s new SQA product,
Solid Step Test, represents just such a clear and
effective breakthrough. It provides a specific func-
tionality that is included in the software application -
built directly into the software - that makes software
quality assurance a radically easier task. It leverages
the power of the computer to automatically deliver
the most important data for ensuring software qual-
ity: The Software Testcase.

Solid Step Test gives developers an easy way to
build into the software application the functional-
ity of Reproducibility, or Automatic Testcases: the
Ability to Automatically Create Testcases Whenever
the Software is Run. And unlike the current state-
of-the-art in SQA technology (i.e. brittle black-box
software testing techniques), Solid Step’s testcase
“language” is not actually a programming language
at all - it contains no control statements like “if”,
“while”, “goto”, etc - so individual testcases never
require programming.

A. Embedded Graphical User Interfaces

Although Solid Step Test works for the general
case of software processes - meaning that it can
enable Reproducibility in any software process -
one of the main kinds of software it was originally
developed for is software with anembedded GUI.

Applications with an embedded GUI include office
software, like word processors, spreadsheet editors,
stand-alone email readers, etc; computer-aided de-
sign software, like mechanical drawing tools, simu-
lation packages, etc; video games; database applica-
tions with large stand-alone GUI’s; web browsers;
etc.

One of the main questions the author wanted to
address when using Solid Step Test in har*GIS’
application was how well this SQA approach would
work in a commercial application with a large
embedded GUI. har*GIS’ “Truckmap” application,
a mobile mapping application with a very large GUI,
is a great example of just such an application.

Fig. 1 shows Truckmap’s main window, which
displays an area map with various data, such as
roadway information, utility equipment locations,
etc, overlaid on the map. Truckmap’s users include
construction crews, utility workers, etc, who are on
the road a lot during the course of their work.

Users can create their own custom data to be over-
laid on the map, which is supported by the menus
and dialogs of the application’s GUI. The kinds of
data that can be created in this way include what
are calledgeonotes, fieldnotes, incident reports, and
map sketches. Fig. 2 shows a fieldnote (dark box at
bottom left) and the corresponding Fieldnote dialog.

c© 2007 SOLID STEP SOFTWARE, INC 3

Fig. 2. Truckmap’s Fieldnote Dialog

III. T HE GREY-BOX SOFTWARE TESTING

METHOD

Black-box software testing products have been
available for a great many years, but as har*GIS’
engineers found when they tried using them with
their application, they suffer from a number of prob-
lems that greatly limit their usefulness in practice.
Namely, black-box testing techniques are quite labor
intensive because they tend to be very brittle, and
in general require programming on a per-testcase
basis (as evidenced by the full-featured program-
ming languages that black-box products use for their
testcases).

Because of the problems inherent with black-
box testing, har*GIS’ engineers had been running
a manual test suite on their application. Although
black-box techniques offer the promise of a certain
measure of automation in the playback of testcases,
there was little evidence of longterm manpower
savings due to the lack of automation in testcase
creation, because of the per-testcase programming
that’s required in general, and the maintenance
costs associated with the brittle nature of black-box
testing.

In stark contrast to brittle black-box testing tech-
niques stands Solid Step’s new SQA product, Solid
Step Test, which uses a testing approach known as
The Grey-Box Software Testing Method, for which
Solid Step’s trademark name isthe grey-box solu-
tionTM .

The main idea behind this approach is the fol-

lowing: by “covering” the main interfaces of the
application - adding 1 or a few Lines of Code
(LOC’s) at the interface points to make calls into
Solid Step’s Reproducibility Libraries - Solid Step
Test can automatically create testcases whenever the
application is run. Then at any later time Solid
Step’s patented Reproducibility Engine coordinates
all the actions in the testcase to automatically replay
that exact run of the application.

The major advantages of this grey-box testing
approach are that the testcases never require any
programming, and it handles the general case of
software processes, i.e. even applications with Com-
plex GUI’s or Asynchronous Processes.

A. Solid Step’s Reproducibility Engine

To explain how Solid Step’s patented repro-
ducibility engine works, it’s helpful to look at
a precursor capture/playback engine that was in
production use at Synopsys, Inc, as early as the
late 1980’s/early 1990’s. Their flagship product had
a large X Windows GUI that used a simple cap-
ture/playback engine to save and replay the GUI
events that occured during the original run of the
software. Jerry Huth was on the team that developed
it, and the original idea to save and replay the GUI
events can be attributed to the group’s manager and
technical lead, William Krieger, who was also a co-
founder of Synopsys.

Fig. 3 shows that early playback engine. Because
it’s just a simple sequential loop that fires GUI

c© 2007 SOLID STEP SOFTWARE, INC 4

Fig. 3. Built-In GUI Event Playback

Fig. 4. Handling File Data During Testcase Playback

c© 2007 SOLID STEP SOFTWARE, INC 5

events at the application until none are left, it can
only enable completely automatic reproducibility in
the simplest kinds of software, i.e. applications that
have no asynchronous interprocess communication
and which don’t read/write files. Synopsys’ appli-
cation certainly wasn’t that simple, so the testcase
log file (the sequential list of GUI events) generally
did not by itself constitute a complete testcase -
typically a human had to gather together and/or edit
some files, including the testcase event log file itself,
to create a complete testcase.

Although this simplistic version of the cap-
ture/playback engine has some obvious limitations,
it proved to be an extremely reliable testing ap-
proach due to the fact that it was built directly into
the application in the same way that Solid Step Test
is built in. In fact, it was the primary testing platform
for many production releases of Synopsys’ software.

In later years however, as Synopsys moved away
from the X Windows GUI platform toward MS
Windows, and probably also due to the fact that
neither Krieger nor Huth were at Synopsys during
this transition period, that testing approach was
never implemented in Synopsys’ later applications
that used the MS Windows GUI platform.

B. Automatic Testcase Creation

The principal design goal of Solid Step Test is
to give the programmer an easy way to include
the functionality of “completely automatic testcase
creation” in their application. This means that no hu-
man has to gather together files, edit files, program
test scripts, etc, or in any other way be required to
expend effort to assemble the complete testcase.

Thus it is Solid Step Test’s job to automatically
save with the testcase any and all data required to
run that testcase, and it is the job of Solid Step’s
patented reproducibility engine to coordinate all of
the testcase data to replay that exact run of the
software application.

C. File Data

A very important kind of data that must be
stored with the testcase to enable reproducibility for
applications that read or write data files is, of course,
the data from the files. This also represents the first
major step in the progression from the simple GUI
capture/playback engine to Solid Step’s generalized
reproducibility engine.

Input file data is handled like this: During testcase
creation, i.e. during the original run of the software
application, input data files are copied into the file
bundle that accompanies the testcase event log file.
Additionally, a “file mapping event” is stored in
the event log file. As illustrated in Fig. 4, the file
mapping events are used during testcase playback to
update the entries in the “file map”, so that at any
given time during testcase playback, the file map’s
entries can be used to serve up file mappings via
function P4 that point the application into the file
bundle to find the input files it needs to read. In
a similar fashion, output data files are also stored
in the file bundle to facilitate easy data verification
during testcase playback, as described in the “Case
Study” section below.

Database files are handled similarly to other input
files, but with a twist to accomodate the fact that
they are updated as the software runs. This is also
explained in the “Case Study” section below.

D. Interprocess Communication

The next major step in the development of Solid
Step’s generalized reproducibility engine is the ad-
dition of the “gate” and its associated control logic,
which gives Solid Step Test the ability to handle
communication between software processes, partic-
ularly asynchronous interprocess communication. If
not handled correctly, asynchronous events such as
these lead to software indeterminacies that result in
incorrect testcase playback.

Fig. 5 shows Solid Step’s complete Reproducibil-
ity Engine. As the testcase is being played back,
the reproducibility engine is informed via function
P2 when asynchronous events occur. If an asyn-
chronous event is expected at a certain time, but
it hasn’t happened yet, then the Gate closes and
testcase playback is halted until the event actually
happens. On the other hand, if an asynchronous
event happens earlier than it is expected, then the
reproducibility engine stores the event information
until the event was expected to happen, i.e. it waits
until the corresponding event in the serial test log
is played back before processing the asynchronous
event.

A sub-genre of interprocess communication is
the “human action”, which closes the gate during
testcase playback to wait for a human to perform
some specific task like loading paper into a printer,
etc.

c© 2007 SOLID STEP SOFTWARE, INC 6

Fig. 5. Solid Step’s Reproducibility Engine

Fig. 6 is an illustration of the serial test log,
or event log, which stores the events that occur
as the software is being run. For an application
with an embedded GUI like Truckmap, the main
process that runs the GUI naturally serves as an
event arbiter, since it processes events in a serial
fashion, so it can create the event log as it processes
the GUI and other events.

Of particular interest is how the asynchronous
events such as the Interprocess Communication and
Human events control the Gate in the Reproducibil-
ity Engine to make the software application run
correctly during testcase playback. In effect the
serial test log acts as a sort of timing strip that opens
and closes the Gate during testcase playback to keep
the software processes in sync in the same way
they were during the original run of the software. In
this way, Solid Step Test can enable reproducibility

not only in individual processes, but also in multi-
process software systems.

E. The Playback Function

In the simple precursor playback engine, the
playback process is essentially just a loop - it
simply plays back events until there are none left.
Fig. 7 shows the flowchart for the simple engine’s
playback function, it just always plays back the
event and has no generalized knowledge about re-
producibility.

By contrast, as shown in Fig. 8, the playback
function at the heart of Solid Step’s reproducibility
engine knows how to handle all the events - the
synchronous, asynchronous, file and human events
- and in general encapsulates all the knowledge
required to make any software process completely
reproducible.

c© 2007 SOLID STEP SOFTWARE, INC 7

Fig. 6. Serial Test Log

Fig. 7. Simple Playback Function

The first decision box in Fig. 8, “Gated or
Empty?”, simply means that if the Gate is closed,
or if there are no more events in the serial event
log file, then do nothing and return. The second
decision box means that if the event is not a File,
Human or Asynchronous event, i.e. if it is a basic
Synchronous event, then simply call that event’s
playback function. The next two decision boxes tell
what to do if the event is a File or Human event.

The last decision box, which is triggered only for
non-Human Asynchronous events, tells what to do
for the two possible cases (i.e. the asynchronous
event either has or has not been received yet). If

the event has not been received yet, then the Gate
closes so the software process will wait for the event
to happen. If the event has been received already,
then the playback function for that event is called
and the process continues running.

IV. PLAYBACK DETERMINATE SOFTWARE

There are a number of factors that can cause soft-
ware to be indeterminate (to exhibit unpredictable
behavior). Since the purpose of Solid Step Test is
to make the software reproducible, which implies
predictability, it is instructive to look at the various

c© 2007 SOLID STEP SOFTWARE, INC 8

Fig. 8. Solid Step’s Playback Function

types of software indeterminacies to understand how
Solid Step Test handles them.

Excluding catastrophic system errors such as out
of memory conditions, operating system crashes,
etc, all software indeterminacies fall into one of
three categories. The first category of software in-
determinacy is when the code, for no good reason,
does something that makes the software indetermi-
nate. For instance, a generic module may sort data
using pointer values. This type of indeterminacy is
easy to fix by changing the code to remove the
indeterminacy, for example to make it stop using
pointer values in an unpredictable manner.

The second type of indeterminacy occurs when
the software is actually designed to be indeter-
minate, such as when an algorithm uses random

numbers. One easy way to handle this situation is to
save the random numbers with the testcase, although
depending on the application there may be other
ways to handle it as well.

The third type of software indeterminacy is
caused by asynchronous process communication. If
not handled properly, multiprocess interaction of
this sort can cause variations in testcase playback.
This last category of indeterminacy is handled by
Solid Step’s patented reproducibility engine, as dis-
cussed in the previous section.

In the case of the second and third categories
of software indeterminacy, it’s interesting to note
that although the software may be indeterminate
when the user originally runs the application, it has
nevertheless been made to be determinate for the

c© 2007 SOLID STEP SOFTWARE, INC 9

purposes of playing back the runs (testcases) of the
software. In this case, the software is said to be
Playback Determinate.

V. CASE STUDY: USING SOLID STEP TEST WITH

C++/.NET

In this section the author discusses how Solid
Step Test (Sst) was used in har*GIS’ application,
with code excerpts to illustrate the various ways that
the interfaces are covered in a large GUI application
that uses the C++/.NET platform. (See appendix for
complete code excerpts.)

A. Object Registration

During testcase playback, messages are sent to
the GUI objects to replay the individual GUI events
(or actions) that are saved in the serial test log.
Examples of objects receiving these messages in-
clude classes derived from CFrameWnd, CWinApp,
CView, etc. When these objects are created, they are
registered with the SstPlayer (the capture/playback
engine) to give each object a unique identifier.
For instance, Truckmap’s CView-derived class is
CTruckmapView, and the following Line of Code
(LOC) was inserted in its constructor (ctor) to
register it with the Sst libraries:

CTruckmapView::CTruckmapView()
{

...
SstPlayer.RegisterType(this,

"TruckmapView") ;

And the following LOC was added in the object’s
destructor (dtor) to unregister it:

CTruckmapView::˜CTruckmapView()
{

...
SstPlayer.Unregister(this) ;

All GUI objects that receive notifications from
Sst are registered in a similar manner.

B. Menu Items

Menu items are typically covered by adding 1
LOC in the callback function for the menu item. For
instance, in Truckmap, the “Pan Left” menu item is
covered like this:

void CTruckmapView::OnPanleft()
{

SstCmdTarget(this, ID_PANLEFT) ;

In this implementation, SstCmdTarget is a class,
not just a function. This LOC instantiates an
object of that class, whose ctor stores the data
in the serial test log. During testcase playback,
the OnPanLeft() function is triggered when the
SstCmdTarget class’ OnPlayback() function sends
the ID PANLEFT message to the CTruckmapView
object.

C. Keystrokes & Button Clicks

Keystrokes and button clicks are handled in a
similar manner to menu items, i.e. by adding 1 LOC
in the callback function:

void CTruckmapView::
OnLButtonDown(UINT nFlags,

CPoint point)
{

SstLBD(this, nFlags, point) ;

As in the previous example, SstLBD is a class
whose ctor saves the data in the serial test log.

D. Window Position and Size

To handle changes to a window’s position or size,
Solid Step Test provides the SstMoveWindow class,
which saves a window’s position and size in the
serial test log. However, since the .NET framework
can handle changes to a window’s position and
size automatically, these events were not represented
explicitly in Truckmap’s code.

In order to cover these events, Truckmap’s main
window’s OnMove() and OnSize() virtual functions
were overridden and LOC’s added to use the Sst-
MoveWindow class:

void CMainFrame::OnMove(int x, int y)
{

CFrameWnd::OnMove(x, y);
SstMoveWindow(this) ;

}

void CMainFrame::OnSize(UINT nType,
int cx,
int cy)

{

c© 2007 SOLID STEP SOFTWARE, INC 10

CFrameWnd::OnSize(nType, cx, cy);
SstMoveWindow(this) ;

}

E. Simple Dialog Boxes

Simple dialog boxes, which do little or no pro-
cessing until the user closes it, are typically handled
by adding 1 LOC in the ctor and dtor, and 1
or a couple LOC’s in each callback function that
can close the dialog. This example shows how
the Fieldnote dialog is covered. The dialog, shown
above in Fig. 2, has three buttons that can close it:
an “Update” button, a “Delete” button and a “Close”
button.

Of particular interest is the “Update” callback
function, which not only saves the event in the serial
test log, but also saves the current values of the
text boxes and checkboxes of the dialog in the test
log. This is required because the “Update” callback
function uses the values of those GUI elements to
modify the internal state of the Fieldnote object,
while all the other callback functions for this dialog
simply react to the event regardless of the values
of the individual GUI elements of the dialog. (See
Appendix for example code.)

F. Complex Dialog Boxes

More complex dialog boxes, which do a signifi-
cant amount of processing as the user interacts with
the individual GUI elements of the dialog, may need
those GUI elements to be covered individually. For
instance, Truckmap has a dialog named “CGNM-
grDlg” (short for Geo Note Manager Dialog), which
lists all the various kinds of geonotes the user has
created. If the user clicks on a geonote in the list,
the callback function for the list element fills in the
other fields of the dialog with the specific values of
that geonote.

To make this dialog reproducible, it was neces-
sary to be able to record and play back the list
selection actions. This was done by adding a new
action class specific to this dialog, which when
played back caused that callback function to be
called. Also, the public function CallOnSelchanged-
Function() was added to the CGNMgrDlg class
since the OnSelchangeMpsktlistCtr() function was
not public. (See Appendix for example code.)

G. Toolbars

Toolbar move events present a similar problem
as the window move/resize events discussed above,
namely that toolbar move events were not explic-
itly represented in Truckmap’s code because the
.NET framework handled those events internally.
But unlike the case of window move/resize, the
class that receives the events that need to be saved
in the testcase also was not directly represented
in Truckmap’s code. So to handle toolbar move
events, a subclass of the .NET toolbar was added to
Truckmap, and the OnWindowPosChanged() virtual
function overridden to handle the move events. The
main window’s toolbars were changed to use the
new class, and the SstDockState class was used to
save the position of all the toolbars. (See Appendix
for example code.)

H. AfxMessageBox

The AfxMessageBox facility provided by .NET,
which gives the application programmer an easy
way to interrupt the application and give the end
user a simple message, or ask a simple question,
could have been covered in a couple different ways.
The development team considered implementing
their own message box functionality, which would
have allowed them to make the message boxes
completely reproducible, i.e. to make the message
boxes appear during testcase playback.

But another much simpler way to cover this mes-
sage box functionality was tried, and it ultimately
worked so well that there seemed to be no need
to replace .NET’s message box functionality. This
approach involved using .NET’s message box virtual
function feature to avoid displaying the message
boxes during testcase playback and instead sim-
ply return whatever value was returned during the
original run of the application. (See Appendix for
example code.)

I. Simple Data Files

“Simple” data files, such as picture files that are
used by a drawing program, are files that are only
read and written at specific times, i.e. when the user
directs the program to read or write the files. These
files are covered by inserting a call to Solid Step’s
reproducibility libraries at the point where the file
is read or written.

c© 2007 SOLID STEP SOFTWARE, INC 11

Although in general only input files need to
be covered to enable reproducibility, in practice
output files are often covered in the same manner to
facilitate easy data verification. In both cases, during
the original run of the program, Solid Step Test
copies the file into the testcase’s file bundle. Then
during testcase playback, input files are read from
the file bundle so the correct input file data is used
by the application. Also during testcase playback,
Solid Step Test redirects the output files to a special
output file area and the output data is automatically
verified against the output files stored in the testcase
file bundle.

Although during testcase playback the application
“thinks” it is reading input file data and writing
output file data to and from the same file locations
it was using during the original run of the program,
Solid Step Test actually redirects the locations to
files in the file bundle or in the special output file
area. In this way, Solid Step Test lets the program
run during testcase playback in what is essentially
a “sandbox”, so that it runs as it originally ran
but without requiring the input files to be in their
original locations and without causing the original
output files to be overwritten.

Although Truckmap does not use simple input
data files (it uses database files for all its data - see
the “Database Files” section below), it nevertheless
dumps the database fields to simple output files
to make use of Solid Step’s easy data verification
functionality (see the “Data Verification” section
below).

J. Database Files

In contrast to simple data files, database files are
continually read and written as the application runs.
Covering database files is done in essentially the
same manner as simple data files, i.e. by adding a
call to Solid Step’s libraries at the place where the
file is used in the application.

Like simple data files, database files are copied
into the file bundle. During testcase playback, how-
ever, another copy of the file is made - a “sandbox”
version - which the program reads and writes as the
program runs. This lets the program run during test-
case playback in the same way that it ran during the
original run of the application, but without reading
or modifying the files from their original locations,
and without modifying the files in the testcase file

bundle - i.e. as noted above, the program runs in
a sandbox provided by Solid Step’s reproducibility
engine. (See Appendix for example code.)

K. The Windows Registry

For applications that use the .NET platform, an-
other very important interface that must be covered
to enable reproducibility is the Windows registry.
As with other interfaces, it is covered by adding
calls into Solid Step’s libraries at the points where
the Windows registry is accessed. The code example
shows how the SstReg class, which provides func-
tions with profiles similar to the registry functions
originally used in Truckmap, is used in place of
those functions. (See Appendix for example code.)

In this way the data returned from the Windows
registry is saved with the testcase and during test-
case playback that saved data is returned to the
application so that it runs in the same way that it
ran during the original run of the application.

L. Testcase Creation

When the interfaces of the application are suffi-
ciently covered by calls into Solid Step’s libraries,
then Solid Step Test saves all the data in a testcase
as the application runs, and at any later time Solid
Step’s reproducibility engine can coordinate all the
data to replay that exact run of the application. In
this way, Solid Step Test provides an “Always On”
functionality that works behind the scenes to create
testcases whenever the application is run.

There are a number of ways that Solid Step
Test can be used in an application. In the most
likely scenario, Solid Step Test can be configured
to overwrite the previous testcase if the application
had exited normally with no apparent errors. If the
application exited abnormally, however, then Solid
Step Test could automatically save the testcase for
later evaluation by the application programmers. In
another scenario which may be useful in certain
situations, for instance during trial testing periods,
Solid Step Test could be configured to save all the
testcases, or to save a random sampling of testcases.

Another very common scenario when testcases
will need to be saved is when an application pro-
grammer/tester is creating a functionality or regres-
sion test suite. In Truckmap a special dialog was
added for this purpose, as shown in Appendix Fig.
1, and it lets the user specify the testcase name

c© 2007 SOLID STEP SOFTWARE, INC 12

and allows them to include a description of the
functionality that the testcase is meant to verify.

M. Data Verification

Although Truckmap’s output data is stored in
a database file, since Solid Step Test includes an
automatic data verification feature for regular (non-
database) output files, code was added to dump
Truckmap’s data to regular files. Then when testcase
playback is finished, Solid Step Test automatically
verifies the data against the data stored with the
testcase. (See Appendix for example code.)

The dialog in Appendix Fig. 3 lets the user choose
which data to dump out and also lets the user insert
a “Pause” into the testcase event log.

This example also illustrates how some kinds of
data, such as the floating point numbers that repre-
sent latitude/longitude values, may not always need
to be saved with the testcase. This is useful since
testcases whose purpose is to verify functionality
unrelated to the exact floating point values might
be unnecessarily brittle if the floating point numbers
were always saved with the testcases.

N. Case Study Discussion

The focus of this project was to see how well
Solid Step Software’s new SQA approach would
work in a large commercial application with an
embedded GUI. So even though some parts of the
Truckmap application were beyond the scope of this
project, such as the GPS features, its very large GUI
provided an excellent opportunity to explore how
this approach would work in a large software system
that uses a leading development platform such as
.NET. As this experience has shown, Solid Step
Test works very well in practice with a full-featured
platform like this since by its nature the platform
provides all the hooks, callbacks, etc, needed to
allow the application programmer to insert the calls
to Solid Step’s libraries required to make the appli-
cation reproducible.

For instance, although the interfaces that need to
be covered by calls to the Solid Step libraries were
usually readily available in Truckmap’s code, in
some cases they were not represented in Truckmap’s
existing code. But even in those cases, the interfaces
were easily exposed, either by overriding virtual

functions in existing subclasses, or by creating sub-
classes and then overriding the virtual functions, as
was done to cover the toolbar events.

It is expected that other full-featured platforms,
such as Sun’s Java platform, or the X Windows
platform, etc, would also work well with Solid Step
Test since by their nature as full-featured platforms
they would include all the hooks, callbacks, etc,
required to properly expose any interfaces that need
to be covered by calls to Solid Step’s libraries.

VI. WHAT IS SOFTWARE QUALITY ?

As Jacco Wesselius and Frans Ververs pointed
out in their landmark paper on “software quality
control” [4], quality is a pervasive part of humans’
everyday lives, yet its exact meaning seems to
be somewhat fuzzy. When asked for a definition,
“many people will remain silent or will vaguely
utter things like ‘excellence’, ‘reliability’, ‘it cannot
be defined’, ‘everyone knows’, etc.”

Their paper surveys a variety of issues related to
product quality in general which explain why it’s
such a hard concept to nail down. Examples in-
clude the difference between “quality of design” and
“quality of conformance” (i.e. luxury vs economy),
which stem from the fact that ultimately the defini-
tion of quality depends on the user (observer), and
the reality is that even a single person’s perception
of quality can change - indeed is likely to change -
over time.

With the aim of bringing some order to the
ambiguities - some would say fundamental para-
doxes - surrounding the nature of product quality
in general, and especially the nature of software
quality, Wesselius and Ververs define the “Three
Components of Software Quality”:

1) Objectively Assessable Component
Criteria which lend themselves to objective
verification

2) Subjectively Assessable Component
Criteria requiring subjective validation

3) Non-Assessable Component
Criteria, such as “future needs”, that can’t be
immediately evaluated

In the search for better software quality assurance
(or “control”), one important idea they put forth is
to expand category 1 so that as much criteria as
possible becomes objectively assessable. Another

c© 2007 SOLID STEP SOFTWARE, INC 13

very important idea is to use frequent feedback
mechanisms, such as with the spiral process model,
to lower risk as much as possible in the other
components of software quality.

A. Automation & Preparedness

The most obvious benefit that Solid Step’s new
grey-box testing approach has for the software de-
velopment process is in the way that it enables
virtually complete Automation of testcase creation
and playback, which drastically lowers the cost of
software testing. This represents a major advance
over black-box testing, which in general requires
programming on a per-testcase basis, and which is
difficult to use in practice because of the brittle
nature of black-box testing techniques. It also has a
major advantage over most other SQA approaches
because it facilitates system-wide, real-world testing
of the application. Furthermore, it’s not limited to
any particular kinds of software errors, as many
SQA approaches are, since it offers the ability to
reproduce any and all runs of the software system
(excluding catastrophic errors like operating system
crashes, etc).

But beyond the obvious advantage that such ex-
tremely thorough and robust testcase automation has
for reducing the cost of software testing, another
perhaps equally important benefit Solid Step Test
has for the overall software development process is
through its facilitation of Preparedness, by virtue
of its “Always On” testcase creation. (Although
this functionality is a feature that can be turned
off, when enabled it is always working in the
background.) And since it is a part of the software
application itself, it can be used not only by the
programmers during development, or by the QA
engineers during testing, it can also be used to
quickly identify errors that occur for end users of
the software, in the exact way the application is used
in their real-world environments.

So this new automatic testcase creation func-
tionality, which represents an objectively assessable
software development criteria that’s built directly
into the application, happens to also facilitate pre-
viously unheard of levels of feedback throughout
the development process by virtue of its “Always
On” functionality. And this kind of feedback is,
as Wesselius and Ververs point out, critical to
assuaging risks associated with the subjectively-

assessable and non-assessable components of soft-
ware development. In this way, Solid Step’s new
SQA approach, which has an instantly recognizable
impact on the first component of software quality,
also greatly helps with the other two components as
well.

VII. CONCLUSION

Solid Step Software’s new SQA product, Solid
Step Test, can be thought of as “The Functionality of
Software Quality” because it is a specific function-
ality, automatic testcase creation, that is included in
the software application to make software quality
assurance a radically easier task. For this reason it
stands apart from all other SQA approaches because
few if any others represent a functionality that
is included in the software application itself, and
certainly no others can enable completely automatic
testcase creation for essentially any and all runs of
the software.

One of the main kinds of applications Solid
Step Test was originally developed for is software
with an embedded GUI. har*GIS Field Information
Systems’ “Truckmap” application has a very large
embedded GUI and therefore has provided a great
opportunity to explore how this new SQA approach
works in a real-world application. As this experience
shows, Solid Step Test has proven to work extremely
well for a large GUI application that uses a leading
programming platform such as Microsoft’s .NET
platform.

But because Solid Step’s patented reproducibil-
ity engine works for the general case of software
applications, even those with asynchronous process
interaction, this new SQA approach has the potential
to become the standard for enabling the highest
levels of software quality in many other types of
software as well. Indeed it should be very inter-
esting to see how well Solid Step Test works in
practice in more applications, from GUI software
to embedded applications, web-based software to
command-line programs, and essentially every other
kind of software application, especially now that
completely automatic testcase creation is known to
be an extremely reliable functionality in practice for
at least one common type of software: applications
with a complex embedded GUI.

c© 2007 SOLID STEP SOFTWARE, INC 14

REFERENCES

[1] J. Huth, Apparatus for and Method of Action Synchronization
for Software Reproducibility, US Patent 6,845,471, 2005.

[2] S. Lohr, Go To: The Story of the Math Majors, Bridge Players,
Engineers, Chess Wizards, Maverick Scientists and Iconoclasts
– The Programmers Who Created the Software Revolution, New
York, NY, USA: Basic Books, 2001.

[3] J. Whittaker, “What Is Software Testing? And Why Is It So
Hard?”, IEEE Software, vol. 17, no. 1, pp. 333-337, Jan. 2000.

[4] J. Wesselius and F. Ververs, “Some Elementary Questionson
Software Quality Control,”Software Engineering Journal, pp
319-330, Nov. 1990.

Visit www.solidstep.com to download a demo of a Solid Step Test
enabled application, learn more about Solid Step Software’s new SQA
solution, or to contact the author.

v1-137

