
c© 2007 SOLID STEP SOFTWARE, INC 1

The Grey-Box Software Testing Method
The Functionality of Software Quality

Appendix
Jerry Huth, Solid Step Software, Inc

I. CASE STUDY: USING SOLID STEP TEST WITH C++/.NET

This appendix accompanies the paper titledThe Grey-Box Software Testing Method: The Functionality
of Software Quality. It includes code fragments to illustrate how Solid Step Test (Sst) was used to cover
the interfaces of har*GIS Field Information Systems’ “Truckmap” software, a large GUI application that
uses the C++/.NET platform.

Each subsection of this appendix corresponds to a subsection of section V of the main paper. For
instance, subsection C of this appendix corresponds to section V, subsection C of the main paper.

A. Object Registration

During testcase playback, messages are sent to the GUI objects to replay the individual GUI events (or
actions) that are saved in the serial test log. Examples of objects receiving these messages include classes
derived from CFrameWnd, CWinApp, CView, etc. When these objects are created, they are registered
with the SstPlayer (the capture/playback engine) to give each object a unique identifier. For instance,
Truckmap’s CView-derived class is CTruckmapView, and the following Line of Code (LOC) was inserted
in its constructor (ctor) to register it with the Sst libraries:

CTruckmapView::CTruckmapView()
{

...
SstPlayer.RegisterType(this, "TruckmapView") ;

And the following LOC was added in the object’s destructor (dtor) to unregister it:

CTruckmapView::˜CTruckmapView()
{

...
SstPlayer.Unregister(this) ;

All GUI objects that receive notifications from Sst are registered in a similar manner.

B. Menu Items

Menu items are typically covered by adding 1 LOC in the callback function for the menu item. For
instance, in Truckmap, the “Pan Left” menu item is covered like this:

void CTruckmapView::OnPanleft()
{

SstCmdTarget(this, ID_PANLEFT) ;

In this implementation, SstCmdTarget is a class, not just a function. This LOC instantiates an object of
that class, whose ctor stores the data in the serial test log.During testcase playback, the OnPanLeft() func-
tion is triggered when the SstCmdTarget class’ OnPlayback() function sends the IDPANLEFT message
to the CTruckmapView object.

c© 2007 SOLID STEP SOFTWARE, INC 2

Fig. 1. Truckmap’s Fieldnote Dialog

C. Keystrokes & Button Clicks

Keystrokes and button clicks are handled in a similar mannerto menu items, i.e. by adding 1 LOC in
the callback function:

void CTruckmapView::OnLButtonDown(UINT nFlags, CPoint p oint)
{

SstLBD(this, nFlags, point) ;

As in the previous example, SstLBD is a class whose ctor savesthe data in the serial test log.

D. Window Position and Size

To handle changes to a window’s position or size, Solid Step Test provides the SstMoveWindow class,
which saves a window’s position and size in the serial test log. However, since the .NET framework can
handle changes to a window’s position and size automatically, these events were not represented explicitly
in Truckmap’s code.

In order to cover these events, Truckmap’s main window’s OnMove() and OnSize() virtual functions
were overridden and LOC’s added to use the SstMoveWindow class:

void CMainFrame::OnMove(int x, int y)
{

CFrameWnd::OnMove(x, y);
SstMoveWindow(this) ;

}

void CMainFrame::OnSize(UINT nType, int cx, int cy)
{

CFrameWnd::OnSize(nType, cx, cy);
SstMoveWindow(this) ;

}

E. Simple Dialog Boxes

Simple dialog boxes, which do little or no processing until the user closes it, are typically handled by
adding 1 LOC in the ctor and dtor, and 1 or a couple LOC’s in eachcallback function that can close the

c© 2007 SOLID STEP SOFTWARE, INC 3

dialog. The following example shows how the Fieldnote dialog is covered. This dialog, shown in Fig. 1,
has three buttons that can close it: an “Update” button, a “Delete” button and a “Close” button.

ctor:
CFieldnoteDlg::CFieldnoteDlg(CWnd * pParent / * =NULL* /)

: CDialog(CFieldnoteDlg::IDD, pParent)
{

SstPlayer.RegisterType(this, "FieldnoteDlg") ;

dtor:
CFieldnoteDlg::˜CFieldnoteDlg()
{

SstPlayer.Unregister(this) ;

Update callback:
void CFieldnoteDlg::OnUpdate()
{

SstSetDlgChecks(this,
IDC_CHECK1,
NULL) ;

SstDlgCmd(this, IDC_UPDATE,
IDC_EDIT,
IDC_EDITLAT,
IDC_EDITLON,
IDC_EDIT1,
NULL) ;

Delete callback:
void CFieldnoteDlg::OnDelete()
{

SstDlgCmd(this, IDC_DELETE) ;

Close callback:
void CFieldnoteDlg::OnClose()
{

SstDlgCmd(this, IDCANCEL) ;

Of particular interest is the “Update” callback function, which not only saves the event in the serial test
log, but also saves the current values of the text boxes and checkboxes of the dialog in the test log. This
is required because the “Update” callback function uses thevalues of those GUI elements to modify the
internal state of the Fieldnote object, while all the other callback functions for this dialog simply react to
the event regardless of the values of the individual GUI elements of the dialog.

F. Complex Dialog Boxes

More complex dialog boxes, which do a significant amount of processing as the user interacts with
the individual GUI elements of the dialog, may need those GUIelements to be covered individually. For
instance, Truckmap has a dialog named “CGNMgrDlg” (short for Geo Note Manager Dialog), which lists
all the various kinds of geonotes the user has created. If theuser clicks on a geonote in the list, the
callback function for the list element fills in the other fields of the dialog with the specific values of that
geonote:

void CGNMgrDlg :: OnSelchangeMpsktlistCtr(NMHDR * pNMHDR,
LRESULT* pResult)

c© 2007 SOLID STEP SOFTWARE, INC 4

To make this dialog reproducible, it was necessary to be ableto record and play back the list selection
actions. This was done by adding a new action class specific tothis dialog, which when played back
caused that callback function to be called:

class CMpSktMgrSelect : public SstListCtrlSelect
{

...
virtual void OnPlayback() {

CMPSKTMGRSELECT_BASE_CLASS::OnPlayback() ;
CGNMgrDlg * dlg = (CGNMgrDlg *)

Mgr()->Get(m_MpSktName) ;
if(dlg) {

LRESULT result ;
dlg->CallOnSelchangedFunction(NULL, &result) ;

}
}

The public function CallOnSelchangedFunction() was addedto the CGNMgrDlg class since the On-
SelchangeMpsktlistCtr() function was not public:

void CGNMgrDlg::CallOnSelchangedFunction(
NMHDR* pNMHDR,
LRESULT * pResult)

{
OnSelchangeMpsktlistCtr(pNMHDR, pResult) ;

}

G. Toolbars

Toolbar move events present a similar problem as the window move/resize events discussed above,
namely that toolbar move events were not explicitly represented in Truckmap’s code because the .NET
framework handled those events automatically. But unlike the case of window move/resize, the class that
receives the events that need to be saved in the testcase alsowas not directly represented in Truckmap’s
code. So to handle toolbar move events, a subclass of the .NETtoolbar was added to Truckmap, and the
OnWindowPosChanged() virtual function overridden to handle the move events:

/ *** ******************

NAME: CTmToolBar

AUTHOR: Jerry Huth

ABSTRACT: This is a subclass of CToolBar that knows how to
save move/resize events in the test log.

*** ****************** /

class CTmToolBar : public CToolBar
{
public:

DECLARE_DYNAMIC(CTmToolBar)
CTmToolBar() ;
˜CTmToolBar() ;

c© 2007 SOLID STEP SOFTWARE, INC 5

//{{AFX_MSG(CTmToolBar)
//}}AFX_MSG
DECLARE_MESSAGE_MAP()

virtual void SaveSstDockState() ;
afx_msg void OnWindowPosChanged(WINDOWPOS * lpwndpos);

};

void CTmToolBar::OnWindowPosChanged(WINDOWPOS * lpwndpos)
{

CToolBar::OnWindowPosChanged(lpwndpos);
SaveSstDockState() ;

}

void
CTmToolBar::SaveSstDockState()
{

((CMainFrame *) m_pDockSite)->SaveSstDockState() ;
}

The main window’s toolbars were changed to use the new class:

class CMainFrame : public CFrameWnd
{

...
CTmToolBar m_wndToolBar ;
CTmToolBar m_wndRouteBar ;
CTmToolBar m_wndViewBar ;
CTmToolBar m_wndNavBar ;
CTmToolBar m_wndMiscBar ;
CTmToolBar m_wndGCBar ;
CTmToolBar m_wndSketchBar ;

...

And the SstDockState class was used to save the position of all the toolbars:

void CMainFrame::SaveSstDockState()
{

SstDockState(this, &m_wndToolBar, &m_wndRouteBar, &m_w ndViewBar,
&m_wndNavBar, &m_wndMiscBar, &m_wndGCBar,
&m_wndSketchBar, NULL) ;

}

H. AfxMessageBox

The AfxMessageBox facility provided by .NET, which gives the application programmer an easy way to
interrupt the application and give the end user a simple message, or ask a simple question, could have been
covered in a couple different ways. The development team considered implementing their own message
box functionality, which would have allowed them to make themessage boxes completely reproducible,
i.e. to make the message boxes appear during testcase playback.

But another much simpler way to cover this message box functionality was tried, and it ultimately
worked so well that there seemed to be no need to replace .NET’s message box functionality. This
approach involved using .NET’s message box virtual function feature to avoid displaying the message
boxes during testcase playback and instead simply return whatever value was returned during the original

c© 2007 SOLID STEP SOFTWARE, INC 6

run of the application. More specifically, the CWinApp DoMessageBox() function was overridden by this
function:

/ *** ******************

NAME: CTRUCKMAPApp::DoMessageBox

AUTHOR: Jerry Huth

ABSTRACT: Override this function so that we can skip the msg
boxes during testcase playback and instead just return what
was returned during the original run of the application.

*** ******************* /

int CTRUCKMAPApp::DoMessageBox(LPCTSTR lpszPrompt, UIN T nType,
UINT nIDPrompt)

{
bool can_show_msg_box = true ;
bool should_save_msg_box_ret = true ;
int retval = IDOK ;
SstDoMessageBox * msgbox_action ;

// Depending on what’s desired, choose the default ret val. / /
if(nType & IDNO) {

retval = IDNO ;
}
if(nType & IDCANCEL) {

retval = IDCANCEL ;
}

// If we’re playing back. //
if(SstPlayer.PlaybackMode()) {

// Don’t show the msg box. //
can_show_msg_box = false ;

// Unless we’re paused. //
if(SstPlayer.IsPlaybackPaused()) {

can_show_msg_box = true ;

// In which case we shouldn’t save the return value. //
should_save_msg_box_ret = false ;

}
}

// If not playing back, see if this is a msg that shouldn’t have its //
// return saved (for instance because the action that caused the msg //
// box to be displayed isn’t being saved). //
else if(SstPlayer.DontSaveMsgBoxRetVal()) {

should_save_msg_box_ret = false ;
}

// Show the msg box if desired. //
if(can_show_msg_box) {

retval = CWinApp::DoMessageBox(lpszPrompt, nType, nIDPr ompt);

c© 2007 SOLID STEP SOFTWARE, INC 7

// Save the return value if needed. //
if(should_save_msg_box_ret) {

SstDoMessageBox(retval, SstMfcGetRealStr(lpszPrompt)) ;
}

}

// Else get the value to be returned. //
else {

msgbox_action = (SstDoMessageBox *)
SstPlayer.Peek("SstDoMessageBox") ;

if(msgbox_action) {
retval = msgbox_action->GetRetVal() ;
delete msgbox_action ;

}
}

return(retval) ;
}

I. Simple Data Files

“Simple” data files, such as picture files that are used by a drawing program, are files that are only
read and written at specific times, i.e. when the user directsthe program to read or write the files. These
files are covered by inserting a call to Solid Step’s reproducibility libraries at the point where the file is
read or written.

Although in general only input files need to be covered to enable reproducibility, in practice output
files are often covered in the same manner to facilitate easy data verification. In both cases, during the
original run of the program, Solid Step Test copies the file into the testcase’s file bundle. Then during
testcase playback, input files are read from the file bundle sothe correct input file data is used by the
application. Also during testcase playback, Solid Step Test redirects the output files to a special output
file area and the output data is automatically verified against the output files stored in the testcase file
bundle.

Although during testcase playback the application “thinks” it is reading input file data and writing
output file data to and from the same file locations it was usingduring the original run of the program,
Solid Step Test actually redirects the locations to files in the file bundle or in the special output file
area. In this way, Solid Step Test lets the program run duringtestcase playback in what is essentially a
“sandbox”, so that it runs as it originally ran but without requiring the input files to be in their original
locations and without causing the original output files to beoverwritten.

Although Truckmap does not use simple input data files (it uses database files for all its data - see the
“Database Files” section below), it nevertheless dumps thedatabase fields to simple output files to make
use of Solid Step’s easy data verification functionality (see the “Data Verification” section below).

J. Database Files

In contrast to simple data files, database files are continually read and written as the application runs.
Covering database files is done in essentially the same manner as simple data files, i.e. by adding a call
to Solid Step’s libraries at the place where the file is used inthe application:

int GEONTDB::SetDatabase(CString TName)
{

if(VCCEADO==NULL){
VCCEADO = new cADOCE();}

if(VCCEADO_DATABASE != TName) {

c© 2007 SOLID STEP SOFTWARE, INC 8

VCCEADO_DATABASE = TName ;
VCCEADO->DATABASE=SstReadDBFile(SstMfcGetRealStr(TN ame)) ;

}
return 1;

}

Like simple data files, database files are copied into the file bundle. During testcase playback, however,
another copy of the file is made - a “sandbox” version - which the program reads and writes as the
program runs. This lets the program run during testcase playback in the same way that it ran during the
original run of the application, but without reading or modifying the files from their original locations,
and without modifying the files in the testcase file bundle - i.e. as noted above, the program runs in a
sandbox provided by Solid Step’s reproducibility engine.

K. The Windows Registry

For applications that use the .NET platform, another very important interface that must be covered to
enable reproducibility is the Windows registry. As with other interfaces, it is covered by adding calls into
Solid Step’s libraries at the points where the Windows registry is accessed. This example shows how the
SstReg class, which provides functions with profiles similar to the registry functions originally used in
Truckmap, is used in place of those functions:

//open the specified key
if(SstReg.OpenKeyEx(INITIAL_KEY, m_KeyPath, 0, KEY_REA D,

&phkResult)!=ERROR_SUCCESS)
{

//if key can’t be created then set the error message
m_RegistryLastErrorMessage.Format(_T(

"Can not open %s key in the Registry"),m_KeyPath);
}
//if the key is opened then do following
else
{

//local variable of size int used the read the
//value from the registry
unsigned long size_of_int = sizeof(int);

//query int value from the specified registry path,
//the value is read in the variable m_ObtainValue
//if unable to read then set the error message
if(SstReg.QueryValue(phkResult, m_Key, m_ObtainValue)

!=ERROR_SUCCESS)
m_RegistryLastErrorMessage.Format(_T(

"Can not query %s key from the registry"),m_Key);

//close the key, and if can’t close it then
//set the error message
if(SstReg.CloseKey(phkResult)!=ERROR_SUCCESS)

m_RegistryLastErrorMessage.Format(_T(
"Can not close %s key in the registry"),m_Key);

}

In this way the data returned from the Windows registry is saved with the testcase and during testcase
playback that saved data is returned to the application so that it runs in the same way that it ran during
the original run of the application.

c© 2007 SOLID STEP SOFTWARE, INC 9

Fig. 2. Recording a Testcase

L. Testcase Creation

When the interfaces of the application are sufficiently covered by calls into Solid Step’s libraries, then
Solid Step Test saves all the data in a testcase as the application runs, and at any later time Solid Step’s
reproducibility engine can coordinate all the data to replay that exact run of the application. In this way,
Solid Step Test provides an “Always On” functionality that works behind the scenes to create testcases
whenever the application is run.

There are a number of ways that Solid Step Test can be used in anapplication. In the most likely
scenario, Solid Step Test can be configured to overwrite the previous testcase if the application had exited
normally with no apparent errors. If the application exitedabnormally, however, then Solid Step Test could
automatically save the testcase for later evaluation by theapplication programmers. In another scenario
which may be useful in certain situations, for instance during trial testing periods, Solid Step Test could
be configured to save all the testcases, or to save a random sampling of testcases.

Another very common scenario when testcases will need to be saved is when an application program-
mer/tester is creating a functionality or regression test suite. In Truckmap a special dialog was added for
this purpose, as shown in Fig. 2, and it lets the user specify the testcase name and allows them to include
a description of the functionality that the testcase is meant to verify.

M. Data Verification

Although Truckmap’s output data is stored in a database file,since Solid Step Test includes an automatic
data verification feature for regular (non-database) output files, code was added to dump Truckmap’s data
to regular files. Then when testcase playback is finished, Solid Step Test automatically verifies the data
against the data stored with the testcase:

/ *** ******************

NAME: CSstPlayerDlg::OkCallback

AUTHOR: Jerry Huth

ABSTRACT: Do whatever the user wants to do, like save
data to files.

*** ******************* /

c© 2007 SOLID STEP SOFTWARE, INC 10

void
CSstPlayerDlg::OkCallback()
{

SstStr dir = "test_data" ;
SstStr file ;

dir = CreateTestDataDir() ;

if(SstIsChecked(IDC_SAVE_BOOKMARKS)) {

// Dump the data. //
SstDumpFileData(dir, "bookmarks.txt", file,

TmView().geoMapper.DumpBookMarkData,
SstIsChecked(IDC_INCLUDE_BOOKMARK_FLOATS)) ;

// If we didn’t dump all the data, do it again but don’t //
// tell SST about it. //
if(!SstIsChecked(IDC_INCLUDE_BOOKMARK_FLOATS)) {

FILE * f = fopen(SstFile::CreatePath(dir, "bookmarks.all.txt"),
"w") ;

TmView().geoMapper.DumpBookMarkData(f, true) ;
}

}

if(SstIsChecked(IDC_SAVE_FIELDNOTES)) {

// Dump the data. //
SstDumpFileData(dir, "fieldnotes.txt", file,

TmView().geoMapper.DumpFieldNoteData,
SstIsChecked(IDC_INCLUDE_FIELDNOTES_FLOATS)) ;

// If we didn’t dump all the data, do it again but don’t //
// tell SST about it. //
if(!SstIsChecked(IDC_INCLUDE_FIELDNOTES_FLOATS)) {

FILE * f = fopen(SstFile::CreatePath(dir, "fieldnotes.all.txt "),
"w") ;

TmView().geoMapper.DumpFieldNoteData(f, true) ;
}

}
}

The dialog in Fig. 3 lets the user choose which data to dump outand also lets the user insert a “Pause”
into the testcase event log.

This example also illustrates how some kinds of data, such asthe floating point numbers that represent
latitude/longitude values, may not always need to be saved with the testcase. This is useful since testcases
whose purpose is to verify functionality unrelated to the exact floating point values might be unnecessarily
brittle if the floating point numbers were always saved with the testcases.

N. Case Study Discussion

The focus of this project was to see how well Solid Step Software’s new SQA approach would work
in a large commercial application with an embedded GUI. So even though some parts of the Truckmap
application were beyond the scope of this project, such as the GPS features, its very large GUI provided
an excellent opportunity to explore how this approach wouldwork in a large software system that uses
a leading development platform such as .NET. As this experience has shown, Solid Step Test works
very well in practice with a full-featured platform like this since by its nature the platform provides all

c© 2007 SOLID STEP SOFTWARE, INC 11

Fig. 3. Dumping Data to Output Files

the hooks, callbacks, etc, needed to allow the application programmer to insert the calls to Solid Step’s
libraries required to make the application reproducible.

For instance, although the interfaces that need to be covered by calls to the Solid Step libraries were
usually readily available in Truckmap’s code, in some casesthey were not represented in Truckmap’s
existing code. But even in those cases, the interfaces were easily exposed, either by overriding virtual
functions in existing subclasses, or by creating subclasses and then overriding the virtual functions, as
was done to cover the toolbar events.

It is expected that other full-featured platforms, such as Sun’s Java platform, or the X Windows platform,
etc, would also work well with Solid Step Test since by their nature as full-featured platforms they would
include all the hooks, callbacks, etc, required to properlyexpose any interfaces that need to be covered
by calls to Solid Step’s libraries.

Visit www.solidstep.com to download a demo of a Solid Step Test enabled application, learn more about Solid Step Software’s new SQA
solution, or to contact the author.

v1-137

