© 2007 SOLID STEP SOFTWARE, INC 1

The Grey-Box Software Testing Method
The Functionality of Software Quality
Appendix

Jerry Huth, Solid Step Software, Inc

|. CASE STUDY: USING SOLID STEP TEST WITH C++/.NET

This appendix accompanies the paper tifldte Grey-Box Software Testing Method: The Functionality
of Software Qualitylt includes code fragments to illustrate how Solid Stept T8st) was used to cover
the interfaces of har*GIS Field Information Systems’ “Tkatap” software, a large GUI application that
uses the C++/.NET platform.

Each subsection of this appendix corresponds to a subseatisection V of the main paper. For
instance, subsection C of this appendix corresponds toge¥¢t subsection C of the main paper.

A. Object Registration

During testcase playback, messages are sent to the GUlt®bgeeplay the individual GUI events (or
actions) that are saved in the serial test log. Examples jectdbreceiving these messages include classes
derived from CFrameWnd, CWinApp, CView, etc. When theseectsj are created, they are registered
with the SstPlayer (the capture/playback engine) to giwehezbject a unique identifier. For instance,
Truckmap’s CView-derived class is CTruckmapView, and tiéfving Line of Code (LOC) was inserted
in its constructor (ctor) to register it with the Sst libesi

CTruckmapView::CTruckmapView()
{

SstPlayer.RegisterType(this, "TruckmapView") ;

And the following LOC was added in the object’s destructdo(to unregister it:

CTruckmapView::"CTruckmapView()
{

SstPlayer.Unregister(this) ;
All GUI objects that receive notifications from Sst are régisd in a similar manner.

B. Menu ltems

Menu items are typically covered by adding 1 LOC in the calkb&unction for the menu item. For
instance, in Truckmap, the “Pan Left” menu item is coveréd this:

void CTruckmapView::OnPanleft()

{
SstCmdTarget(this, ID_PANLEFT) ;

In this implementation, SstCmdTarget is a class, not jusingtfon. This LOC instantiates an object of
that class, whose ctor stores the data in the serial tesDlaigng testcase playback, the OnPanLeft() func-
tion is triggered when the SstCmdTarget class’ OnPlaybdcki(ction sends the IIPANLEFT message
to the CTruckmapView object.

© 2007 SOLID STEP SOFTWARE, INC 2

i_______,..,.w-_Tr-—'r—.-
BURasT :;r Ji'iclﬂ;u.‘_!r:
R up ::\:-::w e Img Seep Softwere's Dilice ;;-»..,_
Ly

Longhude: [0SZ200T Lahuds (41071358

] Slep Sofame, Ino

AN Bapating e B
FEARL EAST 0IR e A0

! [Cee | rnme
|

(')
e 7B

Fig. 1. Truckmap’s Fieldnote Dialog

C. Keystrokes & Button Clicks

Keystrokes and button clicks are handled in a similar matmenenu items, i.e. by adding 1 LOC in
the callback function:

void CTruckmapView::OnLButtonDown(UINT nFlags, CPoint p oint)

{
SstLBD(this, nFlags, point) ;

As in the previous example, SstLBD is a class whose ctor séheedata in the serial test log.

D. Window Position and Size

To handle changes to a window’s position or size, Solid Stegt provides the SstMoveWindow class,
which saves a window’s position and size in the serial tegt owever, since the .NET framework can
handle changes to a window’s position and size automatjcakse events were not represented explicitly
in Truckmap’s code.

In order to cover these events, Truckmap’s main window’s ©mw®() and OnSize() virtual functions
were overridden and LOC's added to use the SstMoveWindosscla

void CMainFrame::OnMove(int x, int y)

{
CFrameWnd::OnMove(X, Y);
SstMoveWindow(this) ;
}
void CMainFrame::OnSize(UINT nType, int cx, int cy)
{
CFrameWnd::OnSize(nType, cX, cy);
SstMoveWindow(this) ;
}

E. Simple Dialog Boxes

Simple dialog boxes, which do little or no processing urité user closes it, are typically handled by
adding 1 LOC in the ctor and dtor, and 1 or a couple LOC’s in eaadlback function that can close the

© 2007 SOLID STEP SOFTWARE, INC 3

dialog. The following example shows how the Fieldnote diak covered. This dialog, shown in Fig. 1,
has three buttons that can close it: an “Update” button, defeé button and a “Close” button.

ctor:
CFieldnoteDlIg::CFieldnoteDIg(CWnd * pParent / *=NULL*/)
. CDialog(CFieldnoteDlg::IDD, pParent)

{
SstPlayer.RegisterType(this, "FieldnoteDIg") ;

dtor:
CFieldnoteDlIg::"CFieldnoteDIg()

{
SstPlayer.Unregister(this) ;

Update callback:
void CFieldnoteDlg::OnUpdate()

{
SstSetDIgChecks(this,

IDC_CHECK1,
NULL) ;
SstDIgCmd(this, IDC_UPDATE,
IDC_EDIT,
IDC_EDITLAT,
IDC_EDITLON,
IDC_EDIT1,
NULL) ;

Delete callback:
void CFieldnoteDIg::OnDelete()

SstDIgCmd(this, IDC_DELETE) ;

Close callback:
void CFieldnoteDlg::OnClose()

SstDIgCmd(this, IDCANCEL) ;

Of particular interest is the “Update” callback functionhieh not only saves the event in the serial test
log, but also saves the current values of the text boxes aeckbbxes of the dialog in the test log. This
is required because the “Update” callback function usesséthges of those GUI elements to modify the
internal state of the Fieldnote object, while all the otha<hack functions for this dialog simply react to
the event regardless of the values of the individual GUI elet® of the dialog.

F. Complex Dialog Boxes

More complex dialog boxes, which do a significant amount afcpssing as the user interacts with
the individual GUI elements of the dialog, may need those @ldinents to be covered individually. For
instance, Truckmap has a dialog named “CGNMgrDIg” (shartGeo Note Manager Dialog), which lists
all the various kinds of geonotes the user has created. lusiee clicks on a geonote in the list, the
callback function for the list element fills in the other figldf the dialog with the specific values of that
geonote:

void CGNMgrDIg :: OnSelchangeMpsktlistCtr(NMHDR * pNMHDR,
LRESULT® pResult)

© 2007 SOLID STEP SOFTWARE, INC 4

To make this dialog reproducible, it was necessary to be tabtecord and play back the list selection
actions. This was done by adding a new action class specifihisodialog, which when played back
caused that callback function to be called:

class CMpSktMgrSelect : public SstListCtrISelect
{

virtual void OnPlayback() {
CMPSKTMGRSELECT_BASE_CLASS::OnPlayback() ;
CGNMgrDIlg *dlg = (CGNMgrDlg =)
Mgr()->Get(m_MpSktName) ;
if(dlg) {
LRESULT result ;
dig->CallOnSelchangedFunction(NULL, &result) ;

}
}

The public function CallOnSelchangedFunction() was admethe CGNMgrDIg class since the On-
SelchangeMpsktlistCtr() function was not public:

void CGNMgrDIg::CallOnSelchangedFunction(

NMHDR+ pNMHDR,
LRESULT * pResult)
{
OnSelchangeMpsktlistCtr(pNMHDR, pResult) ;
}
G. Toolbars

Toolbar move events present a similar problem as the windawefnesize events discussed above,
namely that toolbar move events were not explicitly repmésg in Truckmap’s code because the .NET
framework handled those events automatically. But unlileedase of window move/resize, the class that
receives the events that need to be saved in the testcaseadsot directly represented in Truckmap’s
code. So to handle toolbar move events, a subclass of the tbidar was added to Truckmap, and the
OnWindowPosChanged() virtual function overridden to Hartle move events:

/ kkkkkkkkkkkkkkkkhkkkkhkkkhkkhkkkhkkkkkkhkkkkhkkkhkkkhkkkk kkkkkkkkkkkkkkkkkk

NAME: CTmToolBar
AUTHOR: Jerry Huth

ABSTRACT: This is a subclass of CToolBar that knows how to
save move/resize events in the test log.

* * * * * * * * * *%k% * * *kkkkkkkkkkkkkhhkk /

class CTmToolBar : public CToolBar
{
public:
DECLARE_DYNAMIC(CTmToolBar)
CTmToolBar() ;
"CTmToolBar() ;

© 2007 SOLID STEP SOFTWARE, INC 5

I{{AFX_MSG(CTmToolBar)
IYAFX_MSG
DECLARE_MESSAGE_MAP()

virtual void SaveSstDockState() ;
afx_msg void OnWindowPosChanged(WINDOWPOQOS * Ipwndpos);

h

void CTmToolBar::OnWindowPosChanged(WINDOWPQOS * Ipwndpos)

{
CToolBar::OnWindowPosChanged(lpwndpos);
SaveSstDockState() ;

}

void

CTmToolBar::SaveSstDockState()

{

((CMainFrame *) m_pDockSite)->SaveSstDockState() ;
}

The main window’s toolbars were changed to use the new class:

class CMainFrame : public CFrameWnd

{
CTmToolBar m_wndToolBar ;
CTmToolBar m_wndRouteBar ;
CTmToolBar m_wndViewBar ;
CTmToolBar m_wndNavBar ;
CTmToolBar m_wndMiscBar ;

CTmToolBar m_wndGCBar ;
CTmToolBar m_wndSketchBar ;

And the SstDockState class was used to save the position thfeatoolbars:

void CMainFrame::SaveSstDockState()
{

SstDockState(this, &m_wndToolBar, &m_wndRouteBar, &m_w ndViewBar,
&m_wndNavBar, &m_wndMiscBar, &m_wndGCBar,
&m_wndSketchBar, NULL) ;

H. AfxMessageBox

The AfxMessageBox facility provided by .NET, which givegthpplication programmer an easy way to
interrupt the application and give the end user a simple agesr ask a simple question, could have been
covered in a couple different ways. The development teansidered implementing their own message
box functionality, which would have allowed them to make thessage boxes completely reproducible,
i.e. to make the message boxes appear during testcase gkayba

But another much simpler way to cover this message box fomality was tried, and it ultimately
worked so well that there seemed to be no need to replace INEE&ssage box functionality. This
approach involved using .NET’s message box virtual fumctieature to avoid displaying the message
boxes during testcase playback and instead simply retuatiewvér value was returned during the original

© 2007 SOLID STEP SOFTWARE, INC 6

run of the application. More specifically, the CWinApp DoMageBox() function was overridden by this
function:

/ * * * * * * * * * * *%% * *hkkkkkkkkkkkkkkkk

NAME: CTRUCKMAPApp::DoMessageBox
AUTHOR: Jerry Huth
ABSTRACT: Override this function so that we can skip the msg

boxes during testcase playback and instead just return what
was returned during the original run of the application.

int CTRUCKMAPApp::DoMessageBox(LPCTSTR IpszPrompt, UIN T nType,
UINT nIDPrompt)
{
bool can_show_msg_box = true ;
bool should_save _msg_box_ret = true ;
int retval = IDOK ;
SstDoMessageBox *msgbox_action ;

/I Depending on what's desired, choose the default ret val. / /
if(nType & IDNO) {
retval = IDNO ;
}
ifl nType & IDCANCEL) {
retval = IDCANCEL ;

}

/I If we're playing back. //
if(SstPlayer.PlaybackMode()) {

/l Don’'t show the msg box. //
can_show_msg_box = false ;

/I Unless we're paused. //
if(SstPlayer.IsPlaybackPaused()) {
can_show_msg_box = true ;

/I In which case we shouldn’t save the return value. //
should_save _msg_box ret = false ;

}
}
/I If not playing back, see if this is a msg that shouldn’t have its //
I/l return saved (for instance because the action that caused the msg //
/I box to be displayed isn't being saved). 1

else if(SstPlayer.DontSaveMsgBoxRetVal()) {
should_save_msg_box_ret = false ;

}

/I Show the msg box if desired. //
if(can_show_msg_box) {
retval = CWinApp::DoMessageBox(IpszPrompt, nType, niDPr ompt);

© 2007 SOLID STEP SOFTWARE, INC 7

/I Save the return value if needed. //
if(should_save_msg_box_ret) {

SstDoMessageBox(retval, SstMfcGetRealStr(IpszPrompt))
}
}
/I Else get the value to be returned. //
else {
msgbox_action = (SstDoMessageBox *)

SstPlayer.Peek("SstDoMessageBox") ;
if(msgbox_action) {
retval = msgbox_action->GetRetVal() ;
delete msgbox_action ;

}
}

return(retval) ;

I. Simple Data Files

“Simple” data files, such as picture files that are used by aidg program, are files that are only
read and written at specific times, i.e. when the user ditbetgrogram to read or write the files. These
files are covered by inserting a call to Solid Step’s reprdulity libraries at the point where the file is
read or written.

Although in general only input files need to be covered to &nabproducibility, in practice output
files are often covered in the same manner to facilitate easy krification. In both cases, during the
original run of the program, Solid Step Test copies the fil® ithe testcase’s file bundle. Then during
testcase playback, input files are read from the file bundléhecacorrect input file data is used by the
application. Also during testcase playback, Solid Step Tedirects the output files to a special output
file area and the output data is automatically verified agdhmes output files stored in the testcase file
bundle.

Although during testcase playback the application “thinitsis reading input file data and writing
output file data to and from the same file locations it was usitgng the original run of the program,
Solid Step Test actually redirects the locations to fileshia file bundle or in the special output file
area. In this way, Solid Step Test lets the program run duiesgcase playback in what is essentially a
“sandbox”, so that it runs as it originally ran but withoutjuéring the input files to be in their original
locations and without causing the original output files toolverwritten.

Although Truckmap does not use simple input data files (isudaabase files for all its data - see the
“Database Files” section below), it nevertheless dumpgittabase fields to simple output files to make
use of Solid Step’s easy data verification functionalitye(dee “Data Verification” section below).

J. Database Files

In contrast to simple data files, database files are contintedd and written as the application runs.
Covering database files is done in essentially the same masngmple data files, i.e. by adding a call
to Solid Step’s libraries at the place where the file is usethéapplication:

int GEONTDB::SetDatabase(CString TName)
{
if(VCCEADO==NULL)
VCCEADO = new cADOCE();}
if(VCCEADO_DATABASE != TName) {

© 2007 SOLID STEP SOFTWARE, INC 8

VCCEADO_DATABASE = TName ;
VCCEADO->DATABASE=SstReadDBFile(SstMfcGetRealStr(TN ame)) ;

}

return 1;

}

Like simple data files, database files are copied into the tifedle. During testcase playback, however,
another copy of the file is made - a “sandbox” version - whicé gnogram reads and writes as the
program runs. This lets the program run during testcasebplayin the same way that it ran during the
original run of the application, but without reading or miydig the files from their original locations,
and without modifying the files in the testcase file bundlee: as noted above, the program runs in a
sandbox provided by Solid Step’s reproducibility engine.

K. The Windows Registry

For applications that use the .NET platform, another vergdrtant interface that must be covered to
enable reproducibility is the Windows registry. As with ethnterfaces, it is covered by adding calls into
Solid Step’s libraries at the points where the Windows tegis accessed. This example shows how the
SstReg class, which provides functions with profiles simitathe registry functions originally used in
Truckmap, is used in place of those functions:

/lopen the specified key

if(SstReg.OpenKeyEX(INITIAL_KEY, m_KeyPath, 0, KEY_REA D,
&phkResult))=ERROR_SUCCESS)

{

/lif key can't be created then set the error message
m_RegistryLastErrorMessage.Format(_T(
"Can not open %s key in the Registry"),m_KeyPath);
}
/if the key is opened then do following
else
{
/llocal variable of size int used the read the
/Ivalue from the registry
unsigned long size_of int = sizeof(int);

/lquery int value from the specified registry path,
/lthe value is read in the variable m_ObtainValue
/lif unable to read then set the error message
if(SstReg.QueryValue(phkResult, m_Key, m_ObtainValue)
I=ERROR_SUCCESS)
m_RegistryLastErrorMessage.Format(_T(
"Can not query %s key from the registry"),m_Key);

llclose the key, and if can't close it then

//set the error message

if(SstReg.CloseKey(phkResult)'=ERROR_SUCCESS)
m_RegistryLastErrorMessage.Format(_T(

"Can not close %s key in the registry"),m_Key);

}

In this way the data returned from the Windows registry iseslawith the testcase and during testcase
playback that saved data is returned to the application @bithluns in the same way that it ran during
the original run of the application.

© 2007 SOLID STEP SOFTWARE, INC 9

S5 T Record Testcase

Teskcasa Descriphion:

Fig. 2. Recording a Testcase

L. Testcase Creation

When the interfaces of the application are sufficiently cedeby calls into Solid Step’s libraries, then
Solid Step Test saves all the data in a testcase as the dfplicans, and at any later time Solid Step’s
reproducibility engine can coordinate all the data to replaat exact run of the application. In this way,
Solid Step Test provides an “Always On” functionality thabrnks behind the scenes to create testcases
whenever the application is run.

There are a number of ways that Solid Step Test can be used apglitation. In the most likely
scenario, Solid Step Test can be configured to overwrite teéiqus testcase if the application had exited
normally with no apparent errors. If the application exigdgmhormally, however, then Solid Step Test could
automatically save the testcase for later evaluation byafi@ication programmers. In another scenario
which may be useful in certain situations, for instance miyitrial testing periods, Solid Step Test could
be configured to save all the testcases, or to save a randoplisgraf testcases.

Another very common scenario when testcases will need tabedsis when an application program-
mer/tester is creating a functionality or regression tagesIn Truckmap a special dialog was added for
this purpose, as shown in Fig. 2, and it lets the user speugydstcase name and allows them to include
a description of the functionality that the testcase is méawverify.

M. Data Verification

Although Truckmap’s output data is stored in a databasesiibee Solid Step Test includes an automatic
data verification feature for regular (non-database) dutfms, code was added to dump Truckmap’s data
to regular files. Then when testcase playback is finishedd Step Test automatically verifies the data
against the data stored with the testcase:

/ kkkkkkkkkkhkkkkhkkkkkkkkkkkkkkkkkkkhhhhhkkkkkhhkhhhkhkx kkkkkkkkkkkkkkkhkhkk
NAME: CSstPlayerDlg::OkCallback
AUTHOR: Jerry Huth

ABSTRACT: Do whatever the user wants to do, like save
data to files.

© 2007 SOLID STEP SOFTWARE, INC 10

void
CSstPlayerDlIg::OkCallback()

{
SstStr dir = "test_data" ;

SstStr file ;
dir = CreateTestDataDir() ;
if(SstlsChecked(IDC_SAVE_BOOKMARKS)) {

/[Dump the data. //

SstDumpFileData(dir, "bookmarks.txt", file,
TmView().geoMapper.DumpBookMarkData,
SstlsChecked(IDC_INCLUDE_BOOKMARK_FLOATS)) ;

/I If we didn't dump all the data, do it again but don't //
/I tell SST about it. I
if(!SstlsChecked(IDC_INCLUDE_BOOKMARK_FLOATS)) {
FILE =f = fopen(SstFile::CreatePath(dir, "bookmarks.all.txt"),
W)
TmView().geoMapper.DumpBookMarkData(f, true) ;

}
}

if(SstisChecked(IDC_SAVE_FIELDNOTES)) {

/[Dump the data. //

SstDumpFileData(dir, "fieldnotes.txt", file,
TmView().geoMapper.DumpFieldNoteData,
SstlsChecked(IDC_INCLUDE_FIELDNOTES_FLOATS)) ;

/I If we didn't dump all the data, do it again but don't //
/I tell SST about it. I
if(!SstlsChecked(IDC_INCLUDE_FIELDNOTES_FLOATS)) {
FILE =f = fopen(SstFile::CreatePath(dir, "fieldnotes.all.txt ",
W)
TmView().geoMapper.DumpFieldNoteData(f, true) ;

}
}
}

The dialog in Fig. 3 lets the user choose which data to dum@odtalso lets the user insert a “Pause”
into the testcase event log.

This example also illustrates how some kinds of data, sudheafloating point numbers that represent
latitude/longitude values, may not always need to be savddthe testcase. This is useful since testcases
whose purpose is to verify functionality unrelated to thaatxXloating point values might be unnecessarily
brittle if the floating point numbers were always saved with testcases.

N. Case Study Discussion

The focus of this project was to see how well Solid Step Saftisanew SQA approach would work
in a large commercial application with an embedded GUI. Senehough some parts of the Truckmap
application were beyond the scope of this project, such @<zfAS features, its very large GUI provided
an excellent opportunity to explore how this approach womtatk in a large software system that uses
a leading development platform such as .NET. As this expeeehas shown, Solid Step Test works
very well in practice with a full-featured platform like thisince by its nature the platform provides all

© 2007 SOLID STEP SOFTWARE, INC 11

Salid Step Test - the grey-box solution

ST Conbrolkr:
Biod Pauss

o e Boakmarks
I~ Inchude Latitong

[SaveFiskd Notes

I brclude Latjibong
m-jT:I Pause |
Toogk Al LatiLang

]
Just Recard Cancel

(2006 Soid Step Software, Inc

Fig. 3. Dumping Data to Output Files

the hooks, callbacks, etc, needed to allow the applicatrogrammer to insert the calls to Solid Step’s
libraries required to make the application reproducible.

For instance, although the interfaces that need to be cdJmrecalls to the Solid Step libraries were
usually readily available in Truckmap’s code, in some cabey were not represented in Truckmap’s
existing code. But even in those cases, the interfaces wasity eexposed, either by overriding virtual
functions in existing subclasses, or by creating subctaasel then overriding the virtual functions, as
was done to cover the toolbar events.

It is expected that other full-featured platforms, such as'SJava platform, or the X Windows platform,
etc, would also work well with Solid Step Test since by theiture as full-featured platforms they would
include all the hooks, callbacks, etc, required to propergose any interfaces that need to be covered
by calls to Solid Step’s libraries.

Visit www.solidstep.com to download a demo of a Solid Step Test enabled applicatearnimore about Solid Step Software’s new SQA
solution, or to contact the author.

v1-137

